
e m t a s
TM – your embedded solution partner

Using the emtas binary CANopen examples

Version: v.1.0

v.1.0 - 11/07/2013 1/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

First releas

Date signature

creation Heinz-Jürgen Oertel 10/07/13

check

release

Versionen

Version changes Date Bearbeiter release

1.0 First release 11/07/2013 oe ged

v.1.0 - 11/07/2013 2/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

Content
1Introduction ... 4

1.1Used CAN format description .. 5
1.2Basic example behavior .. 5

2Infineon Hexagon Kit .. 6
2.1Download and install the demo application ... 6
2.2Running the tests ... 6

3Linux (Desktop x86) .. 9
3.1Download and install the demo application .. 9
3.2Running the tests .. 9

4BeagleBone Black (BBB) ... 14
4.1Download and install the demo application .. 14
4.2Running the tests .. 14

5ZedBoard Xilinx Zynq ... 15
5.1Download and install the demo application .. 15
5.2Running the tests .. 15

v.1.0 - 11/07/2013 3/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

1 Introduction
To evaluate CANopen emtas provides ready to use compiled examples for different platforms. Each
chapter briefly describes the example and how to communicate with it using a simple CAN analyzer. It
is supposed that you own already a CAN interface and at least a simple CAN analyzer which is able to
display what happens on the CAN bus and which is able to send out user specified CAN frames. To test
the provided CANopen binaries we use simple CAN commands for testing SDO, node monitoring via
the CANopen Heartbeat mechanism, PDO and EMCY communication.

It is recommended that you own the CiA 301 specification in order to get an exact explanation what is
going on with all the bits and bytes within the CANopen protocol CAN frames. If data types greater
than one byte are used, remember that the CANopen byte order on the CAN bus is low byte first
(little endian).

In order to be tested with standard CANopen configuration tools like emtas CDE, the device EDS file
(electronic data sheet) is always part of the provided zip or tgz archive. Depending on the target
platform the example is delivered as executable, HEX or ELF file.

The default CANopen node-id used in the examples is 32, or hex 0x20. This is important to know
because a lot of the default communication frames are derived from the CANopen node-id, as is the
boot-up message, which is 0x700+node-id and results in 0x720.

If only a basic analyzer is available for testing advice is given how to build CANopen requests by
assembling the CAN id with appropriate data bytes.

To become more familiar with CANopen and the provided examples it is recommended to use a
CANopen configuration tool which is able to read the device EDS File. Emtas offers an evaluation
version of its CANopen Device Explorer, which requires an installed CAN hardware interface.

v.1.0 - 11/07/2013 4/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

1.1 Used CAN format description
Can frames, whether received or composed, are given on a single line starting with the CAN frame id
followed by the data bytes.

This is the boot-up frame:

0x0720 0x7f

Green as background is used for frames sent by the CANopen device, red for tables showing what has
to be entered in a transmit formular of the analyzer or equivalent CAN tool.

1.2 Basic example behavior
The examples implement the CiA 401 profile, a profile describing generic process I/O modules. It
depends what I/O ports are available on the chosen target boards that is available for testing.

The default bit rate used is 250Kbit/s, the CANopen Node-ID is 32.

The examples do not send their Heartbeat messages automatically. It has to be configured via SDO
requests to do so, in order to have not so much frames on the analyzer display.

v.1.0 - 11/07/2013 5/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

2 Infineon Hexagon Kit
The Infineon Hexagon kit comes with the XMC4500 ARM cortex-M4 based controller which
implements the MultiCAN module. If the Kit is complemented with the communication module
COM_ETH the Kit is extended with CAN transceiver and a DSUB9 based CAN connector. Additional the
board has eight LEDs which are controlled by the example using the CiA 401 device profile.

2.1 Download and install the demo application
The zip archive contains the slave401.elf and slave401.hex file. Whether the Dave IDE can be used to
download the ELF file or any Flash utility, like the Segger J-Flash can be used to download the hex file
to the Hexagon board.

http://www.segger.com/admin/uploads/productDocs/UM08003_JFlashARM.pdf

2.2 Running the tests
The used analyzer should be connected to the device before starting the application. If the device
starts up, or the boards reset button is pushed, the CANopen boot-up message is sent. It is a frame
with the CAN frame id 0x700 + node-id.

0x0720 0x00

Our first test will be reading out object 0x1000.

0x0620 0x40 0x00 0x10 0x00 0x00 0x00 0x00 0x00

And we get the answer:

0x05a0 0x43 0x00 0x10 0x00 0x91 0x01 0x00 0x00

v.1.0 - 11/07/2013 6/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

The last 4 byte contain the SDO response value. Because this object is of type UNSIGNED32 the read
value is 0x00000191, decimal 401, the CANopen profile number.

As next step we will read out the Heartbeat producer time.

0x0620 0x40 0x17 0x10 0x00 0x00 0x00 0x00 0x00

0x05a0 0x4b 0x17 0x10 0x00 0x00 0x00 0x00 0x00

The last 4 byte contain the SDO response value. Because this object is of type UNSIGNED16 read value
is zero. Now try to change the Heartbeat Producer Time to 1s. In CANopen the value has to be given in
ms. We send the SDO request with an hex value of 0x3e8:

0x0620 0x2b 0x17 0x10 0x00 0xe8 0x03 0x00 0x00

with the low byte in byte 5 and the high byte in byte 6. The device should response with:

0x05a0 0x60 0x17 0x10 0x00 0x00 0x00 0x00 0x00

And on the Analyser screen a repeated Heartbeat message should be displayed:

0x0720 0x7F

The one and only data byte 0x7f shows the CANopen communication state of the device. 0x7f is PRE-
OPERATIONAL.

We can now switch the device to the state OPERATIONAL by means of a single NMT message:

0x0000 0x01 0x20

The fist byte of the NMT message is the NMT command, switch to OPERATIONAL, the second the node
address, 0x20 decimal 32, our node's node-id.

The one byte content of the Heartbeat message with CAN id 0x0720 changes now to 0x05 which is
the code for NMT state OPERATIONAL.

0x0720 0x05

While switching into state OPERATIONAL the device will send out two configured TPDOs.

0x01a0 0x00 0x00 0x00

0x04a0 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

The content of all bytes is zero. The example does not have digital and analog inputs available on the
hexagon.

Now you should again disable the Heartbeat Producer by writing zero to the Heartbeat object:

0x0620 0x2b 0x17 0x10 0x00 0x00 0x00 0x00 0x00

The device should response with:

0x05a0 0x60 0x17 0x10 0x00 0x00 0x00 0x00 0x00

v.1.0 - 11/07/2013 7/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

and now Heartbeat messages disappear from the analyzer display.

The device is still OPERATIONAL. Because the example is using the 8 LEDs on the COM expansion board
as digital outputs we can control these LEDs now by use of a PDO. The CAN id of the first RPDO of the
device is 0x0220 (0x200 + 32). This RPDO has three mapped objects, each one byte. Therefore we
have to send 3 bytes with this PDO but only the first one is really mapped to the output of the LEDs.

0x0220 0xaa 0x00 0x00

This will switch on every second LED. Sending:

0x0220 0x55 0x00 0x00

will switch on the odd numbered LEDs instead.

Last we can show how the CANopen device reacts on a wrongly configured RPDO. As already explained
the RPDO1 is configured to receive three bytes. When we send the PDO with only two bytes.

0x0220 0xaa 0x55

we get an EMCY message sent out by the device

0x00a0 0x10 0x82 0x 0x00 0x00 0x00 0x00 0x00

The CAN id 0xa0 is composed of 0x80 + node-id, the first and second byte contain the two byte error
code, always remember the little endian byte order. The value of the error code is 0x8210, which
according CiA 301 is "PDO not processed due to length error". The third byte is the content of the
device Error Register in Object 0x1001.

To get more familiar with CANopen it is recommended to use a CANopen configuration tool which is
able to read the device EDS File. Try to read out object 0y1008, “Manufacturer device name”.

v.1.0 - 11/07/2013 8/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

3 Linux (Desktop x86)
PCs having a CAN Interface, whether a PCI or USB interface, supported by either the can4linux or
SocketCAN device driver can be used.

3.1 Download and install the demo application
There is nothing special on the PC. Download the tgz archive linux_x86.tgz and select the executable
suited for your target. The archive contains executables compiled with can4linux or SocketCAN
support and for 32 or 64 bit systems. Before testing the CANopen example, please make sure that the
used SocketCAN driver is working by testing the CAN utilities like cansend and candump (with
interface can0). Or in case of can4linux use the can_send and receive applications.

The selected executable can be stored everywhere in the file system. It is a command line application.
Its behavior can be controlled by command line switches. Once started information on the node state
are displayed on stdout.

The can4linux application slave1_*_can4linux is using /dev/can0 and 250Kbit/s as default.
This can be changed by command line switches -b and -D.

The SocketCAN application slave1_*_socketcan is using the network device can0 by
default. SocketCAN requires, that the interface is configured by the sysadmin before any application
can use it. Use following commands to set the interface up and running:

ip link set can0 type can bitrate 250000 sjw 1
ip link set can0 up

3.2 Running the tests
On the Linux systems all process IO if any are only simulated. The CiA 401 device consists of 3 digital
out ports at object 0x6200:1 to 0x6200:3. With objects 0x6202:1 to 0x6202:3 the simulated output
polarity can be changed (see CiA 401). If one of the output port values is changed via CANopen SDO or
PDO, the example will print a status line at stdout.. The example also simulates the CANopen indicator
LEDS. It will display a green and, in case of errors, a red character 'O'. The green simulated LED will
display the nodes NMT slave status. Each status change is also reported by displaying a status line
with this information.

The used analyzer should be connected to the device before starting the application. If the device
starts up, the CANopen boot-up message is sent. It is a frame with the CAN frame id 0x700 + node-id
followed by an EMCY (0x80 + node-id).

0x0720 0x00

0x00a0 0x34 0x12 0x01 0x01 0x02 0x03 0x04 0x05

v.1.0 - 11/07/2013 9/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

Our first test will be reading out object 0x1000.

0x0620 0x40 0x00 0x10 0x00 0x00 0x00 0x00 0x00

And we get the answer:

0x05a0 0x43 0x00 0x10 0x00 0x91 0x01 0x82 0x00

The last 4 byte contain the SDO response value. Because this object is of type UNSIGNED32 the read
value is 0x00820191. The last significant two bytes represent the CANopen profile number
implemented. It is 0x0191, decimal 401, the CANopen profile number. For the most significant bytes,
see CiA 401.
As next step we will read out the Heartbeat producer time.

0x0620 0x40 0x17 0x10 0x00 0x00 0x00 0x00 0x00

0x05a0 0x4b 0x17 0x10 0x00 0x00 0x00 0x00 0x00

The last 4 byte contain the SDO response value. Because this object is of type UNSIGNED16 read value
is zero. Now try to change the Heartbeat Producer Time to 1s. In CANopen the value has to be given
in ms. We send the SDO request with an hex value of 0x3e8:

0x0620 0x2b 0x17 0x10 0x00 0xe8 0x03 0x00 0x00

with the low byte in byte 5 and the high byte in byte 6. The device should response with:

0x05a0 0x60 0x17 0x10 0x00 0x00 0x00 0x00 0x00

And on the Analyser screen a repeated Heartbeat message should be displayed:

0x0720 0x7F

The one and only data byte 0x7f shows the CANopen communication state of the device. 0x7f is PRE-
OPERATIONAL.

We can now switch the device to the state OPERATIONAL by means of a single NMT message:

0x0000 0x01 0x20

The fist byte of the NMT message is the NMT command, switch to OPERATIONAL, the second the node
address, 0x20 decimal 32, our node's node-id.

The one byte content of the Heartbeat message with CAN id 0x0720 changes now to 0x05 which is
the code for NMT state OPERATIONAL. While switching into state OPERATIONAL the device will send
the configured TPDO.

0x0720 0x05

0x01a0 0xe7 0x0d 0xa1 0x05

TPDO1 of the device has mapped two counters, each UNSIGNED16, therefore the PDO has 4 byte. The
value of the counter is of course a random one at time switching to OPERATIONAL.
Now you should again disable the Heartbeat Producer by writing zero to the Heartbeat object:

v.1.0 - 11/07/2013 10/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

0x0620 0x2b 0x17 0x10 0x00 0x00 0x00 0x00 0x00

The device should response with:

0x05a0 0x60 0x17 0x10 0x00 0x00 0x00 0x00 0x00

and now Heartbeat messages disappear from the analyzer display.

The device is still OPERATIONAL. Because the example is using simulated digital outputs we can
control these now by use of PDOs. The CAN id of the first RPDO of the device is 0x0220 (0x200 + 32).
This RPDO has three mapped objects, each one byte. Therefore we have to send 3 bytes with this PDO.

0x0220 0xaa 0x55 0x88

This will show in the stdout that the device has written to all three simulated IO ports. Each byte in
the date field of the CAN frame ids dedicated to one 8-bit port.

Last we can show how the CANopen device reacts on a wrongly configured RPDO. As already explained
the RPDO1 is configured to receive three bytes. When we send the PDO with only two bytes.

0x0220 0xaa 0x55

we get an EMCY message sent out by the device

0x00a0 0x10 0x82 0x 0x00 0x00 0x00 0x00 0x00

The CAN id 0xa0 is composed of 0x80 + node-id, the first and second byte contain the two byte error
code; always remember the little endian byte order. The value of the error code is 0x8210, which
according CiA 301 is "PDO not processed due to length error". The third byte is the content of the
device Error Register in Object 0x1001.

v.1.0 - 11/07/2013 11/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

To become more familiar with CANopen it is recommended to use a CANopen configuration tool which
is able to read the device EDS File. Try to read out object 0y1008, “Manufacturer device name”. This
will result in the normal (segmented) SDO transfer delivering the string “Linux CANopen slave with
401 profile”.

In the manufacturer area some more objects are accessible. Object 0x2001 again delivers a string
containing the Linux version information as can be found at /proc/version.

At 0x2002 the Linux process id can be read.

v.1.0 - 11/07/2013 12/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

Object 0x2100 is a writable string. Writing to it results on a system with KDE in a system notification
on the Desktop.

v.1.0 - 11/07/2013 13/15
/z/0/1018/build/CANopen_example.odt

e m t a s
TM – your embedded solution partner

4 BeagleBone Black (BBB)
The BeagleBone Black is a small Linux based single board computer. To be used with the CANopen
example the CAN cape has to be added (Beagle Bone Serial Cape Rev. A2, BeagleBone CANBus Cape
Rev. A2,). Before testing the CANopen example, please make sure that the used SocketCAN driver is
working by testing the CAN utilities like cansend and candump (with interface can0).

4.1 Download and install the demo application
The zip archive contains the slave401 executable. Use ftp to transfer it to the board. The executable
is a command line application. Its behavior can be controlled by command line switches. Once started
information on the node state are displayed on stdout, for example if started via a telnet connection.

4.2 Running the tests
The CANopen example for the Beagle Bone is using the very same code and configuration as for the
desktop example. Therefore the same procedure as described in3.2 can be used.

v.1.0 - 11/07/2013 14/15
/z/0/1018/build/CANopen_example.odt

http://circuitco.com/support/index.php?title=BeagleBone_CANBus

e m t a s
TM – your embedded solution partner

5 ZedBoard Xilinx Zynq
ZedBoard is a development platform for the Xilinx Zynq SoC. The Zynq-7000 family is based on the All
Programmable SoC architecture. Zynq-7000 products incorporate a dual core ARM Cortex-A9 based
Processing System (PS) and Xilinx Programmable Logic in a single device. The processing system is
equipped with many interface modules like the dual channel Can controller. Because the Zedboard
does not have on board CAN transceivers the FMC-ISMNET (Avnet) is used. The FMC module provides
two CAN transceivers.

The Zedboard has a limited number of direct usable digital or analog IO which are not used by the
CANopen example. To run the example you will need a Linux version with installed can4linux driver.
Installation instructions are available at http://www.wiki.xilinx.com/CAN4Linux .

5.1 Download and install the demo application
The zip archive contains the slave401 executable. Use ftp or scp to transfer it to the board. The
executable is a command line application. Its behavior can be controlled by command line switches.
Once started information on the node state are displayed on stdout, for example if started via a
telnet or ssh connection.

5.2 Running the tests
The CANopen example for the Zedboard is using the very same code and configuration as for the
desktop example. Therefore the same procedure as described in3.2 can be used.

v.1.0 - 11/07/2013 15/15
/z/0/1018/build/CANopen_example.odt

http://www.wiki.xilinx.com/CAN4Linux

	1 Introduction
	1.1 Used CAN format description
	1.2 Basic example behavior

	2 Infineon Hexagon Kit
	2.1 Download and install the demo application
	2.2 Running the tests

	3 Linux (Desktop x86)
	3.1 Download and install the demo application
	3.2 Running the tests

	4 BeagleBone Black (BBB)
	4.1 Download and install the demo application
	4.2 Running the tests

	5 ZedBoard Xilinx Zynq
	5.1 Download and install the demo application
	5.2 Running the tests

