
emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

User Manual

J1939 Protocol Stack

V 3.4

Version history

Version Changes Date Editor

1.0 First version 14.09.2014 boe

1.2 Add Proprietary Protocol 24.11.2015 boe

1.6 Adapted to 1.6 16.06.2017 phi

1.8 Adapted to 1.8 08.08.2018 boe

3.0 Adapted to common CAN layer 3.0
Added managed SPNs

1.11.2018 ged

3.2 Diagnostic Messages added 05.06.2019 boe

3.3 New Version 10.03.2020 boe

3.4 Add Diagnose Messages 19.03.2020 hil

J1939 Protocol Stack User Manual V3.4 page 1 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Table of Contents
 1 Overview.. 3
 2 Characteristics.. 3
 3 J1939 Protocol Stack concept... 3
 4 Indication functions (Call back functions)...5
 5 PGN Configuration... 6
 5.1 Access functions.. 7
 5.2 Dynamic PGNs.. 7
 6 J1939 Protocol Stack Services... 8
 6.1 Initialization functions.. 8
 6.2 Address Claiming.. 8

 6.2.1 Device Name.. 8
 6.3 PGN Transmission... 9
 6.4 PGN Reception.. 9
 6.5 PGN Requests.. 9
 6.6 Transport Services.. 10

 6.6.1 BAM.. 10
 6.6.2 CMDT... 10

 6.7 Proprietary Protocol... 10
 6.8 Diagnostic Extension.. 11

 6.8.1 Diagnostic DM1.. 12
 6.8.2 Diagnostic DM2... 13
 6.8.3 Diagnose DM3 .. DM64... 13
 6.8.4 Diagnose Request Messages.. 14

 6.9 Diagnostic Tool Extension... 14
 6.10 Communication state.. 15
 7 Timer Handling... 15
 8 Driver... 16
 8.1 CAN Transmit... 16
 8.2 CAN Receive... 17
 9 Using operation systems.. 17
 9.1 Separation into multiple tasks... 18
 10 Implementation of an example... 19
 11 Directory structure.. 20
 12 Multi-Line Handling.. 20
 13 Changes from older versions to version V3.x..21
 13.1 API function prefixes.. 21
 13.2 Initialization of the stack.. 21
 13.3 New functionality... 22

 13.3.1 Managed variables.. 22
 13.3.2 Common access functions to SPNs..22
 13.3.3 Address Claiming indications...22

References
J1939-21 Data Link Layer
J1939-71 Application Layer
J1939-73 Application Layer Diagnostic

J1939 Protocol Stack User Manual V3.4 page 2 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

J1939-74 Application Configuration Messaging
J1939-81 Network Management

 1 Overview
The J1939 protocol stack provides basic communication mechanisms for a SAE J1939 compliant
communication of devices. Thus it is possible to integrate J1939 communication services in a fast and easy
way. The provided services can be used by a user friendly Application Programming Interface (API).

The protocol stack is separated into a hardware-independent part and a hardware-dependent part with a
defined interface between them. So it is easy to port it to new targets.

The configuration, parametrization and scaling is realized by compiler defines and a graphical tool to
ensure optimal use of the resources of the target.

 2 Characteristics
– separation between hardware-dependent part and generic part with defined interface

– ANSI-C compliant

– cyclic transmission and reception of messages (PGNs)

– monitoring of received PGNs

– transport protocols (TP) BAM and CMDT

– node Id is configurable and can be set using Address Claiming

– configurable and scalable

– flexible user interface

 3 J1939 Protocol Stack concept

– all services and functions can be (de)activated by #defines
– all TX and RX PGNs are defined in a central table with their attributes
– strict encapsulation of data, access is only realized by functions via different modules

(no global variables in stack)
– each service provides its own initialization function

J1939 Protocol Stack User Manual V3.4 page 3 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

The function blocks (FB)
– J1939 Protocol handler FB 1)
– COB handler (FB 2)
– Queue handler (FB 3)
– driver(FB 4)

are called from the main service function j1939CommTask(), which calls the J1939 functions.

This main service function j1939CommTask() has to be called after the following events:

• a new CAN message is available in RX queue

• the timer has been expired

• the CAN communication state has changed (e.g. error passive or bus off).

With an operating system, this can be realized by using signals. Without operating system it is sufficient to
poll the function cyclically.

All function for J1939 services return the execution state as data type RET_T. When requesting a PGN this
return value is not the response from the query, but the state of the request. The response of the
requested node is signaled by an indication function. All indication functions have to be registered as
callback functions. (see section 4).

J1939 Protocol Stack User Manual V3.4 page 4 of 22

Illustration 1: Overview over Stack

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 4 Indication functions (Call back functions)
Internal events in the J1939 protocol stack can be connected with an indication function. The application
must provide a call back function for this, which is called at the corresponding event. Events may be
registered with the following function.

j1939EventRegister_<EVENT_TYPE>(functionName1);

For each event multiple indication functions may be registered. These functions will be called after another.
The number of indication functions has to be defined in J1939 DeviceDesigner2 or gen_define.h. The data
type for functionName-Pointer depends on the service.

The following events can be handled:

EVENT_TYPE Event Parameter Return value

COMM_EVENT Communication state changed
(e.g. TX queue full)

CAN/Comm state

CAN_STATE CAN state change (e.g. CAN error
passive)

CAN state

CLAIM_ADDRESS Address claim conflict Old claim address valid
claim address

New claim address

COMMANDED_ADDRESS New Address commanded New Address

REC_ALL_CLAIM_ADDRESS any address claim received Node address,
Device NAME

RECEIVE_PGN PGN received
SPN data already updated

PGN number
Source address
Receive state

RECEIVE_CHECK_PN PGN received
SPN data not yet updated

PGN number
Source address

Reception allowed

TRANSMIT_PGN PGN should be transmitted PGN number Transmission allowed

REQUESTED_PGN PGN request received Requested PGN number

If an event happens, all registered indication functions for this event are called:

1 usually the name of a function or any function pointer
2 or CAN DeviceDesigner for CAN-MultiProtocol-Stack

J1939 Protocol Stack User Manual V3.4 page 5 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 5 PGN Configuration
The configuration of TX PGNs and RX PGNs is realized by 2 lists that are passed to the stack:
- Transmit PGN list
- Receive PGN list

The transmission and reception is handled according to the attributes as specified for each PGN.
Each entry in these lists is a complete description of all attributes of this PGN:

• PGN number for reference
• PGN priority
• cycle time for transmission or monitoring of reception
• inhibit time for TX PGNs
• pointers to application variable that are assigned to a PGN
• number of assigned application variables.

The assignment of application variables is realized by using mapping tables. These contain a pointer to the
application variable and the lengths of the variable in bits for transmission or reception for each entry. The
internal memory format of the variable may be larger. For example a 1-bit variable may be stored as
unsigned char, but for transmission or reception only the defined length in bits is used.
By using the mapping tables with pointers to application variables, the application may work directly with
the application variables without the need for additional copy operations at reception or transmission.
Additional so called managed variables may be used with are handled by the stack internally. Access to
managed variables is only possible by API functions (see next section).
The mapping tables may not contain gaps. For unused entries dummy mapping entries have to be added for
the unused bits until the next 8/16/32 bit value.

J1939 Protocol Stack User Manual V3.4 page 6 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

All Variables can either be defined as C variable in the application code, or as a stack managed variable. All
C variables can be directly accessed, managed variables have to be accessed by the corresponding get or
put function (also see next chapter).

 5.1 Access functions

The access to all application variables in SPNs can be done by API functions irrespective, if the variable
already exists in the application or if it is a managed variable, that is managed by the stack or if it is a
dynamic SPN that has been created at run-time. In order to identify the follow parameters have to be
specified:

• data direction (transmission or reception)
• PGN
• SPN.

The following access functions provide read access:

• j1939SpnGet_u8()
• j1939SpnGet_u16()
• j1939SpnGet_u32().

For access to variables with different bit sizes always the next bit size has to be used. For example when
reading a 3 bit variable, j1939SpnGet_u8() shall be used.

The following access functions provide write access to SPN variables:

• j1939SpnPut_u8()
• j1939SpnPut_u16()
• j1939SpnPut_u32().

For access to variables with different bit sizes always the next bit size has to be used. For example when
writing a 21 bit variable, j1939SpnPut_u32() shall be used.

All functions return the status of the access operation, so that the application is informed about the
result. So it is strictly recommanded to check the return value in the application to know if a variable whas
sucessfully read or written.

 5.2 Dynamic PGNs

In order to create or delete PGNs and SPNS at run-time, the stack module j1939_dynpgn.c needs to be
added to the project. It provides functions to create/delete/enable/disable PGNs dynamically and to
change the mapping of the SPNs in the PGN.

Application variables can be used for mapped SPNs as well. In contrast to automatically created variables
(using malloc) the pointer to the C variable has to be passed and the C variable will be automatically used
to store the value of the SPN.

j1939DynPgnInit() Grundlegende Initialisierung
j1939DynPgnCreatePgn(...) Erzeugung einer J1939 PGN inkl. notwendiger Eigenschaften
j1939DynPgnCreateSpn(...) Erzeugung und Mappen einer J1939 SPN

…

To access the content of the dynamic SPNs the normal access functions like j1939SpnPut_xx() or
j1939SpnGet_xx() can be used. The #define J1939_DYNAMIC_PGN needs to be set to support dynamic PGNs.

J1939 Protocol Stack User Manual V3.4 page 7 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

To dynamically create PGNs malloc() and free() are used. If other target specific functions shall be used for
the memory handling, the #defines J1939malloc and J1939free need to be redefined.

 6 J1939 Protocol Stack Services

 6.1 Initialization functions

Before the stack may be used, the following functions have to be called:

j1939HardwareInit() Basic Hardware initialization
j1939drvCanInit() CAN Cantroller initialization
j1939drvTimerInit() Timer initialization
j1939CanEnable() Start of CAN Controllers
j1939StackInit() initialization of J1939 services

 6.2 Address Claiming

The node address according to J1939 depends on the device functionality and can be specified at compile
time. The device will start with a specified address as defined using the #define J1939_ADDRESS_START. If
this address is already used, it has to be check with devices has the higher priority. This is based on the
Device Name (see section 6.2.1). The device with the lower Device Name may keep its address, the one with
the higher device name needs to use a new one. The lower the Device Name, the higher its priority.

If a device has lost the address claiming it has to:

- switch to reception mode, if the address can not be changed

- or it may try to claim a different address

- or it may wait to get a new address from a configuration tool.

The J1939 stack handles these options automatically. If the start address is already in use and the
modification of the address is allowed (see Arbitrary Address Capable Bit), an indication function is called,
which is registered by j1939EventRegister_ADDRESS_CLAIM(). The application may now use a different
address or keep the device in reception mode.

Anyway, a node id which is set by a configuration tool overwrites the address set by the application.

The application is also informed about a successful address claiming by the ADDRESS_CLAIM indication
function.

 6.2.1 Device Name

Each J1939 device has a unique Device Name, which is used for address claiming and it defines the priority
of the device. It is composed of the following components:

Name Length in Bit

Identity Number 21

Manufacturer Code 11

ECU Instance 3

J1939 Protocol Stack User Manual V3.4 page 8 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Name Length in Bit

Function Instance 5

Function 8

Vehicle System 7

Vehicle System Instance 4

Industry Group 3

Arbitrary Address Capable
(node Id change allowed)

1

These values must be provided by the application and may passed to the stack via the structure
J1939_DEVICE_NAME_T during initialization.

 6.3 PGN Transmission

All PGNs that are defined in the PGN transmit list can be sent any time as long as the node has a valid node
Id. Even PGNs with a cycle time may be sent asynchronous. If the transmission is not possible, the send
function return a return value which is not RET_OK.

PGNs up to a size of 8 bytes may be send by the function j1939SendPgn(). The stack composes the data
according to the mapping and starts its transmission. (The message is copied into the TX queue and the
driver will transmit it, when it is possible).

If the PGN is longer than 8 bytes, one of the transport protocols BAM or CMDT have to be used. The
functions j1939SendCmdt() resp. j1939SendBam() can be used for it (see section 6.6.1 and 6.6.2).

The variables of the cyclic PGNs may be updated directly before the automatic transmission. This can be
done in the indication function which is registered by j1939EventRegister_TRANSMIT_PGN().

 6.4 PGN Reception

All PGNs that are defined in the PGN reception list are received automatically by the stack and the
application variables are updated automatically. The reception does not depend on the node Id of the
producer. After all variables have been updated, the stack calls the indication function which has been
registered by j1939EventRegister_RECEIVE_PGN() in order to inform the application about it.

In order to reject a PGN reception, another callback function needs to be register using
j1939EventRegister_RECEIVE_CHECK_PGN() .

It is also possible to monitor the reception interval. To do so set the cycleTime for the PGN to a value > 0
and the stack will inform the application if the PGN is not received within the specific time.

 6.5 PGN Requests

All PGNs that are defined in the PGN reception may be requested as well. This can be done by the function
j1939RequestPgn(). The reception is done in the same way as with any other PGN.

J1939 Protocol Stack User Manual V3.4 page 9 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 6.6 Transport Services

In order to transfer PGNs whose length exceeds 8 bytes there are 2 services available that can transfer
data up to 1785 bytes:

BAM Broadcast Communication No control data flow/Handshake

CMDT Point to Point Handshake and abort protocol defined

PGNs may be transmitted or received using these protocols. The configuration of PGNs is the same as with
the normal PGNs up to 8 bytes. That means that these PGNs have to be added to the TX or RX list as well.

 6.6.1 BAM

BAM messages are send as broadcast and use a cyclic communication without handshake or data flow
control. The configuration is done as with all other messages in the TX PGN list resp. RX PGN list.

Transmission can be triggered by j1939SendBam() and the reception is the same as with other PGNs.

 6.6.2 CMDT

CMDT messages are exchanged between exactly 2 nodes. To ensure that the data are acknowledged, a
special handshake communication and an abort message are defined.

The configuration is done as with all other messages in the TX PGN list resp. RX PGN list.

Transmission can be started by j1939SendCmdt(). As it is a point-to-point communication the destination
address has to specified as well.

The reception is the same as with other PGNs.

 6.7 Proprietary Protocol

There are 2 messages defined to transfer proprietary PGNs:

Protocol PGN Receiver Protocol for messages

 > 8 Bytes

Proprietary A 0xFEBF fixed CMDT

J1939 Protocol Stack User Manual V3.4 page 10 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Proprietary B 0xFF00..0xFFFF Broadcast BAM

Depending on the length of the message, it is send as standard message or using a transport protocol. The
stack determines by itself the required TP protocol. The 2 functions j1939ProprietaryTransmit_A() and
j1939ProprietaryTransmit_B() can be used for transmission.

 6.8 Diagnostic Extension

There are several message types available for diagnostics that differ in length and error type. The definition
of these messages can be created in the same way as the normal PGNs, or being used with the Diagnostic
Extension Module directly. There are several functions in this module to create, compose, send, and receive
diagnostic messages.

The arrangement of the diagnostic messages can be defined using the corresponding diagnostic function.

Usually Diagnostic Messages are requested by a service tool. If there is a request pending, the stack can
call the callback witch is registered by j1939RegisterEvent_REQUESTED_PGN(). The application can then
decide to send the requested Diagnostic Message.

Example:

Tool requested PGN 65227 (DM2)

callback function gets called with parameter PGN 65227

Application calls mapping function 1939DiagnosticMap_DMx() and send function
j1939DiagnosticSend_DMx().

Parameter of a received message can be decoded with the corresponding function like:
j1939DiagnosticGetPara_Dmx()

J1939 Protocol Stack User Manual V3.4 page 11 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

All the data is saved in an internal buffer, the size of the buffer can be adjusted with the configuration tool
JDD. This size is the maximum size for a Diagnostic Message.

The buffer is only valid the callback function of j1939RegisterEvent_REQUESTED_PGN() and can be
overwritten by new messages.

Attention! Some Diagnostic Message need the support for BAM / CMDT.

 6.8.1 Diagnostic DM1

There are 2 special functions to simplify the mapping for diagnostic type DM1 messages.

The function j1939DiagnosticMap_DM1() can be used to update the mapping of the data for the DM1 PGN,
because the number of DTC (Diagnostic Trouble Code) depends on the current system configuration.

Transmission can be started by j1939DiagnosticTransmit_DM1().

J1939 Protocol Stack User Manual V3.4 page 12 of 22

Request
Diagnostic

PGN

Receive Handling

j1939DiagnosticGetPara_DMx

j1939DiagnosticMap_DMx
...

j1939DiagnosticMap_DMx
j1939Diagnostic_Send_DMx

Diagnostic Tool J1939 Stack Application

Diagnostic
Indication

….

Diagnostic
Response

Request
Diagnostic

PGN 65226 (DM1)

Receive Handling

j1939DiagnosticMap_DM1
...

j1939DiagnosticMap_DM1
j1939Diagnostic_Send_DM1

Diagnostic Tool J1939 Stack Application

Diagnostic
Indication

….

Diagnostic
Response

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Diagnostic data of type DM1 are transmitted cyclic. The corresponding request takes place in the indication
function that was registered with j1939RegisterEvent_DIAGNOSTIC_REQUESTED_PGN() .

 6.8.2 Diagnostic DM2

Requests for Diagnostic Message DM2 are indicated with the indication function registered with
j1939RegisterEvent_DIAGNOSTIC_REQUESTED_PGN(). The mapping is done by calling
1939DiagnosticMap_Dm2() the desired number of times. The sending is then triggered by calling
j1939DiagnosticSend_Dm2().

 6.8.3 Diagnose DM3 .. DM64

Requests for Diagnose data of type DM3 are indicated by the indication function registered by
j1939RegisterEvent_DIAGNOSTIC_REQUESTED_PGN() The single or multiple mapping is done by
j1939DiagnosticMap_DMx() and sending is done by j1939DiagnosticSend_DMx().

J1939 Protocol Stack User Manual V3.4 page 13 of 22

Request
Diagnostic

PGN 65227 (DM2)

Receive Handling

j1939DiagnosticMap_DM2
...

j1939DiagnosticMap_DM2
j1939Diagnostic_Send_DM2

Diagnostic Tool J1939 Stack Application

Diagnostic
Indication

….

Diagnostic
Response

Request
Diagnostic

PGN

Receive Handling

j1939DiagnosticGetPara_DMx

j1939DiagnosticMap_DMx
...

j1939DiagnosticMap_DMx
j1939Diagnostic_Send_DMx

Diagnostic Tool J1939 Stack Application

Diagnostic
Indication

….

Diagnostic
Response

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 6.8.4 Diagnose Request Messages

Requests for diagnostic data will be indicated by the registered indication function. The single or multiple
mapping is done with j1939DiagnosticMap_DMx() and sending is done with j1939DiagnosticSend_DMx().

Received parameters for diagnostic messages can be determined by using
j1939DiagnosticGetPara_DMx().

 6.9 Diagnostic Tool Extension

Usually a Diagnostic Message is requested by a tool. To request Diagnostic Messages from other devices the
function j1939RequestPgn() can be used.

Received Diagnostic Messages are indicated to the appliction with the callback registered by
j1939Register_DIAGNOSTIC_RECEIVED_PGN(). In the context of the callback all the received data can
be evaluated.

Example: After receiving DM1 → j1939DiagnosticGet_DM1()

J1939 Protocol Stack User Manual V3.4 page 14 of 22

Request
Diagnostic

PGN 65227 (DM2)

Transmit Request

Receice Handling

j1939DiagnosticGet_DM2

Diagnostic Tool J1939 Stack Application

Diagnostic
Request

Diagnostic
AnswerDiagnostic

Response

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 6.10 Communication state

Changes in the communication state can be triggered by hardware events (Bus-Off, Error Passive, overflow,
CAN message received, transmission interrupt) or by a timer (return from bus-off). These state changes are
signaled by a registered indication function (see j1939RegisterEvent_COMM_EVENT).

The following table describes which events cause a change of the communication state:

Event/Change of state New state Description

Bus-OFF Bus-OFF CAN controller is Bus-OFF, no communication possible

Bus-OFF Recovery Bus-OFF CAN controller tries to switch from bus-Off to active state

Return from Bus-OFF Bus-On CAN controller is ready to communicate and was able to
receive or transmit at least 1 message

Error Passive Bus-on, CAN passive CAN controller is in error passive state

Error Active Bus on CAN controller is in error active state

CAN Controller overrun - Messages are lost in the CAN controller. The event is
signaled at each loss of a message

REC-Queue full - Receive queue is full

REC-Queue overflow - Messages are lost because the receive queue is full. This
event is signaled at each loss of a message.

TR-Queue full Bus-Off/On,
Tr-Queue full

Transmit Queue is full, the current message is saved,
following message will not be saved

TR-Queue overflow Bus-Off/On,
Tr-Queue overflow

Transmit Queue is full, the message was not saved

TR-Queue empty Bus-On,
Tr-Queue ready

Transmit is ready to store messages (at least 50% free)

 7 Timer Handling
The Timer handling is based on a cyclic timer. Its interval can be individually defined for each application
and the use of an external timer is possible as well. A timer interval is called timer tick and the timer tick is
the base for all timed actions in the J1939 Stack.

A new Timer is started by coTimerStart() and sorted into the linked timer list, so that all timed actions are
sorted in this list. Thus after one timer tick only the first timer has to be checked as the following timers
cannot be expired yet.

J1939 Protocol Stack User Manual V3.4 page 15 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

The timer structure must be provided by the calling function. This means also that there is no limitation of
the number of timers.

It might happen that not all times will be a multiple of a timer tick. In this case it is possible to specify if
the timer time shall be rounded up or down. This is done when starting the timer by using the function
coTimerStart().

 8 Driver
The driver consists of a part for the CPU and a part for the CAN controller.

CPU driver

The task of the CPU driver is to provide a constant timer tick. It can be created by a hardware interrupt or
derived from another application timer.

CAN driver

The task of the CAN driver is to handle and to configure the CAN controller, to send and to receive CAN
messages and to provide the current state of the CAN. The buffer handling is done by the J1939 Protocol
Stack.

 8.1 CAN Transmit

Messages to be transmitted are transferred by the J1939 stack into the transmit queue. Transmission itself
is then started by the function codrvCanStartTransmission(). Transmission of all messages is interrupt
driven. The function codrvCanStartTransmission() has only to issue or simulate an TX interrupt.

The TX interrupt service function has to use codrvCanTransmit() to get the next message from the queue,
program the CAN controller and transmit it. This is done until the TX queue is empty.

J1939 Protocol Stack User Manual V3.4 page 16 of 22

Illustration 2: Timer Handling

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 8.2 CAN Receive

Reception of CAN messages is interrupt driven. The received CAN message is transferred into the RX queue
and can be later used by the J1939 stack.

 9 Using operation systems
To use the J1939 stack together with a real time operational system(RTOS) there are two possibilities:

1. Use of the J1939 Stack within one task only and cyclically call of the central stack function

2. Separation into multiple tasks

This requires an inter task communication.

J1939 Protocol Stack User Manual V3.4 page 17 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 9.1 Separation into multiple tasks

If the J1939 Stack is called from multiple tasks, polling of the central stack function is no longer necessary,
but it is this the central function which has to be called at the following events:

– CAN Transmission interrupt

– CAN Receive interrupt

– CAN State interrupt (if supported)

– Timer interrupt (or timer tick signal, timer task)

The implementation of the inter task communication and handling depends of the used operation system.

Macro Usage Meaning

CO_OS_SIGNAL_WAIT() coCommTask() Waiting for any signal

CO_OS_SIGNAL_TIMER() Timer handler Timer Tick

CO_OS_SIGNAL_CAN_STATE() CAN status interrupt Changed CAN Status

CO_OS_SIGNAL_CAN_RECEIVE() CAN Receive Interrupt New CAN message received

CO_OS_SIGNAL_CAN_TRANSMIT() CAN Transmit Interrupt New CAN message transmitted

J1939 Protocol Stack User Manual V3.4 page 18 of 22

Illustration 3: Process Signal Handling

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 10 Implementation of an example
The delivery contains several examples. The steps to implement an example depends on the used IDE but
the basic steps are identical. Please use the example et1 to start with:

1. go to folder examples_sl/et1

2. configure PGNs in file gen_pgn.c

3. include external declarations in file gen_extern_decl.h

4. adapt configuration in gen_define.h

5. set include paths for the compiler

- ../../j1939lib_sl/inc

- ../../colib_sl/inc

- ../../colib_sl/src

- ../../codrv_sl/<drivername>

6. build project

Once this example runs, it may be modified to meet your requirements.

Files in example folder:

gen_define.h Configuration of J1939 stack

gen_pgn.c PGN configurations

gen_extern_decl.h external declarations of application variables

main.c Main file

J1939 Protocol Stack User Manual V3.4 page 19 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Makefile Makefile

<examplename>.cddp J1939 DeviceDesigner project file

If the J1939 stack package has been purchased with a specific target driver, the will be usually a target
specific example such as et1_stm32f1_attolic, or et1_rx63_hew, or et1_samc21 and others with a IDE
specific project file.

 11 Directory structure
j1939_lib_sl/src J1939 Protocol Stack Sources and private header

j1939_lib_sl/inc J1939 Protocol Stack public header files

colib_sl/src J1939 Protocol Stack adapter layer and queue handling

codrv_sl/ CAN and CPU driver

j1939examples_sl/ example projects

ref_man reference manual

For the multi line edition of the J1939 stack or the CAN-MultiProtocol-Stack the _sl-prefix will be _ml
instead.

 12 Multi-Line Handling
The usage of the Multi-Line stack is the same as with the single-line version. All described features can be
used with multiple CAN lines. All data of all lines are handled separately so that all lines can be run
independent of each other. The PGN defintions for multi-line applications is created in a single project of
the J1939 DeviceDesigner but each line is handled in a separate way.
Each API functions has an additional argument in the beginning which indicates the line as an UNSIGNED8
Value starting at 0. This applies for all stack functions and all indication functions.

Examples for multi-line applications can be found in example_ml/xxx.

J1939 Protocol Stack User Manual V3.4 page 20 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 13 Changes from older versions to version V3.x

 13.1 API function prefixes

The prefix of all API functions has been renamed from

j1939_xxx

to

j1939Xxx

resp.

j1939drvXxx

Example:

old: j1939_stackInit()

new: j1939StackInit()

 13.2 Initialization of the stack

The functions for the initialization of the J1939 stack have been synchronized with our CANopen stack and
the CAN-MultiProtocol-Stack. This additionally allows additional parameters and a more flexible usage of
the stack.

The initialization sequence should look like this now:

 /* Initialize CAN controller with Bitrate 250 Kbit */

 if (j1939drvCanInit(250) != RET_OK) {

 return(1);

 }

 /* Initialize time */

 if (j1939drvTimerSetup(CO_TIMER_INTERVAL) != RET_OK) {

 return(2);

 }

 /* Initialize J1939 stack functions */

 if (j1939StackInit() != RET_OK) {

return(3);

}

J1939 Protocol Stack User Manual V3.4 page 21 of 22

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 13.3 New functionality

 13.3.1 Managed variables

In addition to existing application variables now so called managed variables (MV) can be used by the J1939
stack. That means that the memory for an SPN is managed by the stack and can only be accessed by API
functions like j1939SpnPut_u16(). For each SPN one can decide between an application variable or a
managed variable in the J1939 DeviceDesigner.

 13.3.2 Common access functions to SPNs

There is a set of common access functions for all SPNs irrespective of their typ (application variable,
managed variable, dynamically created SPN). All SPNs can be accessed by the same functions like e.g.
j1939SpnGet_u8() or j1939SpnPut_u32().

Specific access functions for dynamically created SPNs are not required or supported anymore.

 13.3.3 Address Claiming indications

The end of the address claiming can now be signalled via the callback function registered with
j1939EventRegister_CLAIM_ADDRESS(). So the application can know then a valid address has been claimed.

Additionally the function j1939AddressClaimingStart() has been added to start the address claiming with a
new node address.

J1939 Protocol Stack User Manual V3.4 page 22 of 22

	1 Overview
	2 Characteristics
	3 J1939 Protocol Stack concept
	4 Indication functions (Call back functions)
	5 PGN Configuration
	5.1 Access functions
	5.2 Dynamic PGNs

	6 J1939 Protocol Stack Services
	6.1 Initialization functions
	6.2 Address Claiming
	6.2.1 Device Name

	6.3 PGN Transmission
	6.4 PGN Reception
	6.5 PGN Requests
	6.6 Transport Services
	6.6.1 BAM
	6.6.2 CMDT

	6.7 Proprietary Protocol
	6.8 Diagnostic Extension
	6.8.1 Diagnostic DM1
	6.8.2 Diagnostic DM2
	6.8.3 Diagnose DM3 .. DM64
	6.8.4 Diagnose Request Messages

	6.9 Diagnostic Tool Extension
	6.10 Communication state

	7 Timer Handling
	8 Driver
	8.1 CAN Transmit
	8.2 CAN Receive

	9 Using operation systems
	9.1 Separation into multiple tasks

	10 Implementation of an example
	11 Directory structure
	12 Multi-Line Handling
	13 Changes from older versions to version V3.x
	13.1 API function prefixes
	13.2 Initialization of the stack
	13.3 New functionality
	13.3.1 Managed variables
	13.3.2 Common access functions to SPNs
	13.3.3 Address Claiming indications

