
emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

User Manual

CANopen/CANopen-FD Master/Slave Protocol Stack

V 3.6.0

Version History

Version Changes Date Editor Release

1.0.2 Dynamic objects 2012/12/20 ged

1.1.0 Change version to stack version 2013/03/09 boe

1.2.0 Change version to stack version 2013/04/04 boe

1.3.0 Sleep Mode added 2013/06/06 oe

1.4.0 SDO block transfer added 2013/07/08 oe

1.5.0 Object indication handling added 2013/10/02 oe

1.6.0 Added new features 2014/09/05 ri

1.7.0 Insert limit check 2014/09/05 ri

CANopen/CANopen-FD Protocol Stack V3.6 page 1 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Version Changes Date Editor Release

2.0.0 Add Multiline chapter 2014/11/15 boe

2.2.0 Dynamic objects updated, network
gateway

2015/05/15 ged

2.2.4 Domain indication
Bootup Procedure

2015/06/29 ged

2.3.1 Split Indication/DynOd Application 2015/07/14 ged

2.4.0 Add MPDO Usage 2015/08/25 ged

2.4.3 Removed non CANopen msg 2015/10/29 phi

2.6.1 Updated C#, LSS Slave, Store 2016/06/17 phi

2.6.4 Add SDO client domain indication 2016/09/23 boe

2.7.0 Adapt to library stack 2.7.0 2017/05/08 boe

2.99.0 Added CAN-FD 2018/06/22 phi

3.0.0 Release V3.0 2018/06/28 phi

3.2.0 Domain/String-handling 2019/01/31 hil

3.4.3 Updated Configuration Manager 2019/08/16 hil

3.5.0 Change to emotas 2019/10/07 boe

3.6.0 New version 2020/03/10 boe

CANopen/CANopen-FD Protocol Stack V3.6 page 2 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Table of Contents
 1 Overview.. 6
 2 Properties... 6
 3 CANopen Protocol Stack concept...9
 4 CANopen classic and CANopen FD... 11
 5 Indication Functions... 12
 6 The object dictionary.. 16
 6.1 Object dictionary variables... 16
 6.2 Object description... 16
 6.3 Object dictionary assignment.. 18
 6.4 Strings and Domains.. 18

 6.4.1 Domain Indication.. 18
 6.5 Dynamic Object Dictionary... 19

 6.5.1 Managed by Stack functions...19
 6.5.2 Managed by the application... 19

 7 CANopen Protocol Stack Services...20
 7.1 Initialization functions..20

 7.1.1 Reset Communication..20
 7.1.2 Reset Application... 21
 7.1.3 Set node id.. 21

 7.2 Store/Restore... 22
 7.2.1 Load Parameter... 22
 7.2.2 Save Parameter... 22
 7.2.3 Clear Parameter.. 22

 7.3 SDO... 23
 7.3.1 SDO Server.. 23
 7.3.2 SDO Client... 25
 7.3.3 SDO Block transfer... 25

 7.4 SDO Client Network Requests.. 25
 7.5 USDO.. 26

 7.5.1 USDO Server... 26
 7.5.2 USDO Client.. 27

 7.6 PDO.. 28
 7.6.1 PDO Request... 28
 7.6.2 PDO Mapping..28
 7.6.3 PDO Event Timer... 29
 7.6.4 PDO data update... 29
 7.6.5 RTR Handling... 29
 7.6.6 PDO and SYNC.. 30
 7.6.7 Multiplexed PDOs (MPDOs).. 30

 7.6.7.1 MPDO Destination Address Mode (DAM)..31
 7.6.7.1.1 MPDO DAM Producer...31
 7.6.7.1.2 MPDO DAM Consumer...31

 7.6.7.2 MPDO Source Address Mode (SAM)...31
 7.6.7.2.1 MPDO SAM Producer...32
 7.6.7.2.2 MPDO SAM Consumer...32

 7.7 Emergency.. 33
 7.7.1 Emergency Producer... 33

CANopen/CANopen-FD Protocol Stack V3.6 page 3 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.7.2 Emergency Consumer... 33
 7.8 NMT.. 33

 7.8.1 NMT Slave.. 33
 7.8.2 NMT Master.. 33
 7.8.3 Default Error Behavior.. 33

 7.9 SYNC.. 34
 7.10 Heartbeat.. 34

 7.10.1 Heartbeat Producer...34
 7.10.2 Heartbeat Consumer... 34

 7.11 Life Guarding.. 35
 7.12 Time... 35
 7.13 LED... 35
 7.14 LSS Slave... 36
 7.15 Configuration Manager.. 36
 7.16 Flying Master... 37
 7.17 Communication state... 38
 7.18 Sleep Mode for CiA 454 or CiA 447..39
 7.19 Startup Manager.. 40
 8 Timer Handling... 41
 9 Driver.. 42
 9.1 CAN Transmit... 42
 9.2 CAN Receive... 43
 10 Using operation systems... 44
 10.1 Separation into multiple tasks..44
 10.2 Object dictionary access..45
 10.3 Mailbox-API.. 46

 10.3.1 Creation of an application thread...47
 10.3.2 Sending commands..48
 10.3.3 Reception of events...49

 11 Multi-Line Handling... 50
 12 Multi-Level Networking – Gateway Functionality..50
 12.1 SDO Networking.. 50
 12.2 EMCY Networking.. 51
 12.3 PDO Forwarding.. 51
 13 Example implementation...52
 14 C#-Wrapper.. 53
 15 Step by Step Guide – using CANopen Services...54
 15.1 SDO server usage.. 54
 15.2 SDO client usage... 54
 15.3 USDO Server Utilization... 55
 15.4 USDO Client Utilization.. 55
 15.5 Heartbeat Consumer... 56
 15.6 Emergency Producer... 56

 15.6.1 CANopen classic...56
 15.6.2 CANopen FD.. 57

 15.7 Emergency Consumer... 57
 15.8 SYNC Producer/Consumer...58
 15.9 PDOs.. 58

CANopen/CANopen-FD Protocol Stack V3.6 page 4 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15.9.1 Receive PDOs..58
 15.9.2 Transmit PDOs... 59

 15.10 Dynamic objects... 60
 15.11 Object Indication.. 60
 15.12 Configuration Manager.. 61
 16 Directory structure.. 62

Table of Images

 Illustration 1: Module Overview.. 9
 Illustration Illustration 2: Indications... 15
 Illustration 3: Reset Communication..20
 Illustration 4: Reset Application... 21
 Illustration Illustration 5: SDO Server Read..23
 Illustration Illustration 6: SDO Server Write...24
 Illustration Illustration 7: SDO Client Write...25
 Illustration 8: USDO Server Read... 26
 Illustration 9: USDO Client Write..27
 Illustration 10: PDO Sync.. 30
 Illustration 11: SYNC Handling... 34
 Illustration 12: Timer Handling... 41
 Illustration 13: CAN Transmit.. 42
 Illustration 14: CAN Receive.. 43
 Illustration 15: Process Signal Handling...44
 Illustration 16: Mailbox-API... 46
 Illustration 17: Multi-Level Networking..50

References

CiA®-301 v4.2.0 Application layer and communication profile
CiA®-302 v4.1.0 Additional application layer functions
CiA®-303-3 v1.3.0 CANopen recommendation – Part 3: Indicator specification
CiA®-305 v2.2.14 Layer setting services (LSS) and Protocols
CiA®-401 v3.0.0 CANopen device profile for generic I/O modules

CANopen/CANopen-FD Protocol Stack V3.6 page 5 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 1 Overview
The CANopen/CANopen-FD Protocol Stack provides communication services for a CANopen/CANopen-FD
compliant communication of devices and enables the fast and straight-forward integration of CANopen
into devices. All services of CiA 301/1301 are supported (depending on version) by a user-friendly API. For
simple portability to new hardware platforms the protocol stack is separated into a hardware-independent
and hardware-dependent part with a defined interface.

Configuration and scaling is handled by a graphical configuration tool to generate optimized code and run-
time efficiency.

 2 Properties
– Support of CANopen Classic a CANopen FD

– Separation of hardware-dependent and hardware-independent part with defined interface

– ANSI-C compliant

– Compliance to mandatory MISRA-C rules

– support of all CiA 301/1301 services

– CiA-301 V4.2 or CiA-1301 V5.0 compliant

– configurable and scalable

– facility to add extension modules, e.g. for advanced master services

– flexible user interface

– static and dynamic object dictionary

– multiple expansion stages

– LED CiA-303

CANopen/CANopen-FD Protocol Stack V3.6 page 6 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

CANopen expansion stages

Service Basic Slave Master/Slave Manager

SDO Server 2 128 128

SDO Client 128 128

SDO Transfer:
expedited
segmented
block

●
●
-

●
●
○

●
●
○

USDO Server 255 255 255

USDO Client 255 255

PDO Producer 32 512 512

PDO Consumer 32 512 512

PDO Mapping Static Static/dynamic Static/dynamic

MPDO Destination Mode ○ ○

MPDO Source Mode ○ ○

SYNC Producer ● ●

SYNC Consumer ● ● ●

Time Producer ● ●

Time Consumer ● ●

Emergency Producer ● ● ●

Emergency Consumer 127 127

Guarding Master ●

Guarding Slave ● ●

Bootup Handling ● ●

Heartbeat Producer ● ● ●

Heartbeat Consumer 127 127

NMT Master ● ●

NMT Slave ● ● ●

LED CiA-303 ● ● ●

LSS CiA-305 ● ●

Sleep Mode CiA-454 ● ● ●

Master Bootup CiA-302 ●

Configuration Manager ●

Flying Master ○ ○

Redundancy ○ ○

CANopen/CANopen-FD Protocol Stack V3.6 page 7 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Service Basic Slave Master/Slave Manager

Safety (SRDO) ○ ○ ○

Multiline ○ ○

CiA-401 (U8/INT16) ○ ○ ○

CiA-xxx ○ ○ ○

● - included, ○ - optional

CANopen/CANopen-FD Protocol Stack V3.6 page 8 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 3 CANopen Protocol Stack concept

– all services and functionalities can be switched on/off by #define directives
– configuration of the stack is done by the CANopen DeviceDesigner tool
– strict encapsulation of data, access only by function calls between different modules (no global

variables)
– each service provides its own initialization function

The function blocks(FB)
– CANopen Protocol Handler (FB 1)
– COB Handler (FB 2)
– Queue Handler (FB 3)
– Driver (FB 4)

… are called by the central working function coCommTask(), in order to run all CANopen functions.

The central function has to be called if:
– new CAN messages are available in the receive queue
– the timer has expired
– the CAN communication state has changed.

CANopen/CANopen-FD Protocol Stack V3.6 page 9 of 63

Illustration 1: Module Overview

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

If using an operating system, it can be indicated by signals. In embedded environments polling of the
function coCommTask() is possible as well.

All function calls of CANopen service return the data type RET_T. If a function requests data from a
remote node, the return value of the function is not the response but the state of the request. The
response from the other node is signaled by an indication function, that has to be registered in
advance(see chapter 4).

CANopen/CANopen-FD Protocol Stack V3.6 page 10 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 4 CANopen classic and CANopen FD

The User-Interface between CANopen and CANopen FD is identical and differs only in the following
functions:

CANopen classic
(Single/Multiline)

CANopen FD
(Single/Multiline)

CANopen classic + FD
(Multiline)

SDO function/indication present - present

USDO function/indication - present present

EMCY Producer 3 parameters 6 parameters 6 parameters

EMCY Consumer 4 parameters 9 parameters 9 parameters

As long as the functionality of all CAN-Lines are identical (CANopen classic or CANopen FD), the respective
function parameters apply. Using CANopen on one line, the CANopen FD function parameters apply for all
lines, even if they are driven in CANopen classic mode. In this case additionally parameters for CANopen-FD
are being ignored or handed over as 0.

If CANopen classic or CANopen FD principle is being supported, can be defined in the CANopen
DeviceDesigner. The CANopen FD stack also provides the possibility to decide if the line is using CANopen
classic or CANopen FD during the initialization. Therefore the function coCanOpenStackInit() awaits a list
as parameter, which line is using CANopen classic or CANopen FD.

CANopen/CANopen-FD Protocol Stack V3.6 page 11 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 5 Indication Functions
The application can be informed about events or responses by the CANopen stack. The application must
provide a function for each indication and register it at the stack. The registration can be done for each
event type with the following function:

coEventRegister_<EVENT_TYPE>(&functionName);

It is possible to register multiple functions for an event. Then the function has to be called multiple times.
The maximal value has to be defined with the CANopen DeviceDesigner.
The data type for the functionName pointer depends on the CANopen service.

The following events can be registered:

EVENT_TYPE Event Parameters Return value

COMM_EVENT Communication state changed Communication state

CAN_STATE CAN state changed CAN state

EMCY automatically generated
Emergency message shall be sent

Error Code
Pointer to additional
bytes

Send Emcy/Discard Emcy

EMCY_CONSUMER Emergency Consumer message
received

Node Id
Error Code
Error Register
Additional Bytes

LED_GREEN/LED_RED Set red/green LED On/off

ERRCTRL Heartbeat/Bootup State Node Id
HB State
NMT Statue

NMT NMT State changed new NMT state Ok/not Ok

LSS LSS slave information Service
bitrate
pointer to ErrorCode
pointer to ErrorSpec

Ok/not Ok

LSS_MASTER Service-number
ErrorCode
ErrorSpec
Pointer to Identity

PDO asynchronous PDO received PDO Number

PDO_SYNC synchronous PDO received PDO Number

PDO_UPDATE Update PDO data before
transmission

Index
Subindex

CANopen/CANopen-FD Protocol Stack V3.6 page 12 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

EVENT_TYPE Event Parameters Return value

PDO_REC_EVENT Time Out for PDO PDO number

MPDO Multiplexed PDO received PDO number
Index
Subindex

SDO_SERVER_READ SDO Server Read Transfer begins SDO server number
index
subindex

Ok/SDO abort code/Split
indication

SDO_SERVER_WRITE SDO Server Write Transfer
finished

SDO server number
index
subindex

Ok/SDO abort code/Split
indication

SDO_SERVER_CHECK_WRITE SDO Server Check Write Transfer SDO server number
index
subindex
pointer to received
data

Ok/SDO abort code

SDO_SERVER_DOMAIN_WRI
TE

SDO Domain size reached Index
subindex
Domain Buffer Size
Transfered Size

SDO_CLIENT_READ SDO Client Read Transfer finished SDO client number
index
subindex
number of data
result

SDO_CLIENT_WRITE SDO Client Write Transfer finished SDO client number
index
subindex
result

USDO_SERVER_READ USDO Server Read Transfer begins nodeId
index
subindex

Ok/SDO abort code/ Split
Indication

USDO_SERVER_WRITE SDO Server Write Transfer
finished

nodeId
index
subindex

Ok/SDO abort code/ Split
Indication

USDO_SERVER_CHECK_WRIT
E

SDO Server Write Transfer begins nodeId
index
subindex
pointer to received
data

Ok/SDO abort code

USDO_SERVER_DOMAIN_WR
ITE

SDO Domain size reached Index
subindex
Domain Buffer Size
Transfered Size

USDO_CLIENT_READ SDO Client Read Transfer finished nodeId
index

CANopen/CANopen-FD Protocol Stack V3.6 page 13 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

EVENT_TYPE Event Parameters Return value

subindex
result

USDO_CLIENT_WRITE SDO Client Write Transfer finished nodeId
index
subindex
result

OBJECT_CHANGED Object was changed by SDO or PDO
access

index
subindex

OK/SDO abort code

SYNC SYNC message received

SYNC_FINISHED SYNC handling finished

TIME Time message received Pointer to time
structure

LOAD_PARA Restore saved objects Subindex/OD segment

SAVE_PARA Store objects Subindex/OD segment

CLEAR_PARA Delete stored values Subindex/OD segment

SLEEP Sleep mode state Sleep mode state OK/Abort

CFG_MANAGER DCF write finished Transfer
index
subindex
reason

MANAGER_BOOTUP Manager Event occurred NodeID
Event Type

FLYMA Flying Master state State
Master Node
Priority

SRD SRD response from the Master Result
error code

GW_SDOCLIENT_USER Client SDO for Gateway
functionality

- SDO number

CANopen/CANopen-FD Protocol Stack V3.6 page 14 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Each event can also be initialized by a static indication function at compile time. Static indication functions
are always called after dynamic functions was executed.

All indication functions, that return a value, come with an additional argument:

Argument Value Meaning

execute CO_FALSE Test-mode – the function checks if the functionality can be executed with
the given parameters.
Return value of the function shall be evaluated
Indication functionality may NOT be executed.

CO_TRUE Execution-mode – functionality will be executed with the given
parameters.
Return value of the function is not evaluated.
Indication functionality shall be executed.

All registered functions are called with the argument execute = CO_FALSE. In this case the indication
functions shall check, if the action shall be executed or not. Only if all functions request RET_OK, all
indication functions are called again with execute = CO_TRUE in order to execute the corresponding
actions.

Illustration 2: Indications

CANopen/CANopen-FD Protocol Stack V3.6 page 15 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 6 The object dictionary
The object dictionary is generated by the CANopen DeviceDesigner and passed to the stack during the
initialization. Gaps in subindices are allowed. All objects in the communication segment (1000h-1fffh) are
managed by the corresponding service. The objects can only be accessed by function calls.

For all other objects there are 3 implementation options:
– managed variable (variable managed by stack)
– managed constant (constant managed by stack)
– pointer to variable in application-

For managed variables and constants there are access functions for the corresponding data types
available:oOdGetObj_xx and coOdPutObj_xx, where xx is the data type of the object.
Additional attributes like access types, size information and default values can be retrieved using the
functions coOdGetObjAttribute(), coOdGetObjSize() or coOdGetDefaultVal_xx.

The function coOdSetCobid() can be used to set COB-IDs of CANopen services.

The object dictionary implementation consists of 3 parts:
– variables (managed, constants, pointers)
– subindex descriptions
– object dictionary assignment of indices

 6.1 Object dictionary variables

For each variable type up to 3 arrays can be created:

Managed variables:
U8 od_u8[] = { var1_u8, var2_u8 };
U16 od_u16[] = { var3_u16 };
U32 od_u32[] = { var4_u32, var5_uu32 };

Managed constants:
const U8 od_const_u8[] = { var6_u8, var7_u8 };
const U16 od_const_u16[] = { var8_u16 };

Pointer to variables:
const U8 *od_ptr_u8[] = { &usr_variable_u8 };

The definition and the handling of the arrays is done by the CANopen DeviceDesigner.

 6.2 Object description

The object description exists for each sub index. It contains the following information:

CANopen/CANopen-FD Protocol Stack V3.6 page 16 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Information Meaning

subindex Subindex

dType Data type and implementation type (var, const, pointer, service)

tableIdx Index in corresponding table

attr Object attributes

defValIdx Index in constant table for default value

limitMinIdx Index in constant table for minimum value

limitMaxIdx Index in constant table for maximum value

Definition of the attributes:

CO_ATTR_READ Object is readable

CO_ATTR_WRITE Object is writable

CO_ATTR_NUM Object is a number

CO_ATTR_MAP_TR Object can be mapped into a TPDO

CO_ATTR_MAP_REC Object can be mapped into a RPDO

CO_ATTR_DEFVAL Object has a default value

CO_ATTR_LIMIT Object has limits

CO_ATTR_DYNOD Object is dynamically created

CO_ATTR_STORE Object shall be saved non-volatile

CO_ATTR_COMPACT Object has identical subindices

CO_ATTR_FD Object only applies in FD-Mode

CO_ATTR_STD Object only applies in classical CAN
Mode

The limit check for objects can be entered individually for each object using the CANopen DeviceDesigner.

CANopen/CANopen-FD Protocol Stack V3.6 page 17 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 6.3 Object dictionary assignment

The object dictionary assignment exists once for each index in the object dictionary. It consists of:

index Index of the object

numberOfSubs Number of sub indices

highestSub Highest sub index

odType Object Type (Variable, Array, Record)

odDescIdx Index in object_description table

 6.4 Strings and Domains

Strings are handled in 2 different ways:

– Constant strings are handled in the object dictionary. Therefore a list of pointers to the strings
and a list of size information are implemented. Both lists are constant and cannot be modified.

– Variable strings have to be provides by the application. Pointers to these strings as well as the
current and maximum length are handled in internal lists. To setup these settings, you can use
coOdVisStringSet() and coOdSetObjSize() at run time. If you setup a default value for a variable
string, the current and maximum length are set to the length of the default string.

Domains have to be provided from the application. Starting address, maximum size and current size
have to be provided at run time, by using the functions coOdDomainAddrSet() and coOdSetObjSize().

When receiving a string or domain, the length of the object will be setup with the length of the
received string or domain. When reading the object, the current length will be provided. Writing the
object once again is always possible, but only up to the maximum length.

 6.4.1 Domain Indication

Domains may have an arbitrary size and can also be used for program downloads. In this case they may not
be stored completely in RAM, but have to be written to flash after a certain buffer size. The indication
function coEventRegister_SDO_SERVER_DOMAIN_WRITE() may be used for this. The registered indication
function is called after a defined number of CAN messages. The data may be written into flash and the
corresponding domain buffer will be cleared and reused from beginning.

Attention! This behavior is applied to all domain objects. The specified size of CAN messages and reset of
the buffer is done always when the size is reached. If other and larger domains shall be used, the data have
to be copied to other buffers if necessary.

CANopen/CANopen-FD Protocol Stack V3.6 page 18 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 6.5 Dynamic Object Dictionary

 6.5.1 Managed by Stack functions

Objects at the manufacturer and profile specific area can also be created dynamically at run-time. So it is
possible to use already available or dynamic created variables from the application code with the object
dictionary. These variables are linked to an object dictionary index and subindex. Dynamic objects can only
be used with the following data types: NTEGER8, INTEGER16, INTEGER32, UNSIGNED8, UNSIGNED16 and
UNSIGNED32.

To use dynamic objects dynamic memory is allocated by the stack at run time using malloc() 1. This is
realized using the function coDynOdInit() which needs to know the number of the dynamic objects. Objects
itself are added using the function coDynOdAddIndex() and the sub-indices using coDynOdAddSubIndex().
These functions also specifies the attributes of the objects like access rights, PDO mapping information
limits and more.

Dynamically created objects can be used with all functions which are provided by the CANopen stack and
these objects can used in all services likes SDO or PDO without limitations.

Please refer to the example example_sl/dynod.

 6.5.2 Managed by the application

Dynamic objects can also be created and managed by the application. To implement it, the application has
to provide the following functions:

RET_T coDynOdGetObjDescPtr(/* get Object description */

UNSIGNED16 index, /* index */

 UNSIGNED8 subIndex, /* subindex */

 CO_CONST CO_OBJECT_DESC_T **pDescPtr

UNSIGNED8 coDynOdGetObjAddr(/* get address of object */

 CO_CONST CO_OBJECT_DESC_T *pDesc /* pointer for description index */

UNSIGNED32 coDynOdGetObjSize(/* get size of object */

 CO_CONST CO_OBJECT_DESC_T *pDesc /* pointer for description index */

The stack always queries the object description and the size and the pointer after that. These objects may
be used in PDOs as well. But the object must exist as long it is used, because the pointer is taken internally
to refer to the mapped object. This is why the pointer to a dynamic object may not change as long as it is
used in PDOs.

The example example_sl/dynod_appl may be used as a template for this functionality.

It is not possible to mix both functionalities.

1 malloc() is only used for dynamically created objects.

CANopen/CANopen-FD Protocol Stack V3.6 page 19 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7 CANopen Protocol Stack Services

 7.1 Initialization functions

Before using the CANopen Protocol stack, the following initialization functions have to be called:

coCanOpenStackInit() Initialization of CANopen Stack and object dictionary
codrvCanInit() Initialization of CAN Controllers
codrvTimerSetup() Configuration of a time (e.g. hardware timer)
codrvCanEnable() Start of CAN Controllers

 7.1.1 Reset Communication

Reset of all communication variables (index 0x1000..0x1ffff) in the object dictionary to the default values.
COB-IDs will be set according to the predefined connection set. At the end the registered event function
(see coEventRegister_NMT())) is called.

Illustration 3: Reset Communication

CANopen/CANopen-FD Protocol Stack V3.6 page 20 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.1.2 Reset Application

If an indication function is registered (see coEventRegister_NMT()), it can be called to do some actions in
the application (e.g. to stop a motor). After that all object variables are reset to the default values and
Reset Communication is executed.

 Illustration 4: Reset Application

 7.1.3 Set node id

The node id have to be in a range of 1 to 127 or 255(data type unsigned char) and can be set via

- a constant at compile time
- a variable
- a function call
- LSS

This have to be entered in the input field at the CANopen DeviceDesigner.

Notes:

For LSS the node id must be set to 255u.

If the node id is provided via a function call or via a variable, the function prototype or the external
variable declaration should be defined in gen_define.h

CANopen/CANopen-FD Protocol Stack V3.6 page 21 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.2 Store/Restore

The stack supports Store/Restore functionality only on request by writing to the objects 0x1010 and
0x1011. Reading the objects always returns the value 1.

The implementation of the non-volatile storage and restoring these values is part of the application.

 7.2.1 Load Parameter

After Reset Communication or Reset Application the default values of the objects can be overwritten by
the Load Parameter indication function. The function can be registered at the initialization of the CANopen
stack using coCanOpenStackInit().

The indication function is called after each Reset Communication and Reset Application event and has to
restore the parameters saved using Save Parameter (see 7.2.2).

It can also be used to set hard-coded values if the objects 0x1010 (store parameters) and 0x1011 (restore
parameters) are not present.

 7.2.2 Save Parameter

Saving of object values into non-volatile memory is done after writing the special value 'save' (0x65766173)
into the object 0x1010. A corresponding function has to be registered using coEventRegister_SAVE_PARA()
and this registered function shall handle the non-volatile memory storage. The selection of objects to be
saved is application specific and can be defined within the registered function.

Which object can be stored is application specific. The CANopen static provides two functions,
odGetObjStoreFlagCnt() and odGetObjStoreFlag(), to get the objects which are marked with the store flag
by the CANopen Device Designer.

 7.2.3 Clear Parameter

Deleting the values stored in non-volatile memory is done after writing the special value 'load' (0x64616f6c)
into the object 0x1011. A corresponding function has to be registered using coEventRegister_CLEAR_PARA()
and this registered function shall delete the content of the non-volatile memory. A following Reset
Application or Reset Communication event shall not load any stored parameters when the Load Parameter
Function (see 7.2.1) is called.

CANopen/CANopen-FD Protocol Stack V3.6 page 22 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.3 SDO

The COB-IDs of the first Server SDO are automatically set to the values defined in the Predefined
Connection Set at Reset Communication. All other COB-IDs of SDOs are disabled after Reset Communication.

In general, COB-IDs can only be modified if the Disabled bit is set in the COB-ID in advance as required by
the CANopen specification.

 7.3.1 SDO Server

SDO Server services are passive. They are triggered by messages from external SDO Clients and react only
according the received messages(request). The application can be informed about the start and the end of
an SDO transfer by registered indication functions (see coEventRegister_SDO_SERVER_READ(),
coEventRegister_SDO_SERVER_WRITE() and coEventRegister_SDO_SERVER_CHECK_WRITE()).

The SDO service evaluates the received data. It is checked if the objects are available in the object
dictionary and if the access attributes are valid. After that the data are copied to or read from the object
dictionary. Before and after the transmission indication functions can be called, which can modify the
response of the server.

Illustration 5: SDO Server Read

CANopen/CANopen-FD Protocol Stack V3.6 page 23 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

The registered event functions may be left with the parameter RET_SDO_SPLIT_INDICATION. In this case
the processing of the SDO request is stopped and the stack will not generate a response until the function
coSdoServerReadIndCont() or coSdoServerWriteIndCont() is called. This mechanism can be used to
read/write data from an external (e.g. I²C) component.

Illustration 6: SDO Server Write

CANopen/CANopen-FD Protocol Stack V3.6 page 24 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.3.2 SDO Client

SDO Client services must be requested (started) by the application. Reading a value from a remote device
can be started with coSdoRead() and writing a value with coSdoWrite(). Both functions start the SDO
transfer. Later the application is informed about the result or an error by a registered indication function.
(see coEventRegister_SDO_CLIENT_READ() and coEventRegister_SDO_CLIENT_WRITE()). For each SDO
transfer a timeout is monitored, which aborts the transfer after the timeout. The configurable timeout
value is valid for one CAN frame. If the transmission consist of multiple CAN frames (segmented transfer),
the timeout restarts for each CAN frame.

Illustration 7: SDO Client Write

 7.3.3 SDO Block transfer

SDO Block transfer is automatically used by the SDO client as soon as the data size of the data to be
transferred is larger than defined by the CANopen DeviceDesigner. Does the SDO server not support SDO
Block transfer the client switches back to normal segmented transfer and repeats the request.
SDO requests to the server are always confirmed as SDO block transfer.
Calculation of the optional CRC within the Block transfer can be activated with the CANopen
DeviceDesigner. Calculation itself is done using internal tables.

 7.4 SDO Client Network Requests

SDO Client Network Requests are done by the functions coSdoNetworkRead() and coSdoNetworkWrite()
and are handled analog to the SDO Client Read and Client Write calls.

CANopen/CANopen-FD Protocol Stack V3.6 page 25 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.5 USDO

USDOs are only available in CANopen FD mode. Using it at the same time with SDOs is not possible.

The COB-IDs for USDO are set according to the own Node-ID and are to changeable. Currently there are no
configuration objects in the object dictionary necessary.

The configurations is done in the CANopen DeviceDesigner.

 7.5.1 USDO Server

The USDO Server is a passive service. It is triggered by messages from external USDO Clients and react only
according the received messages(request). The application can be informed about the start and the end of
an USDO transfer by registered indication functions (see coEventRegister_USDO_SERVER_READ(),
coEventRegister_USDO_SERVER_WRITE() and coEventRegister_USDO_SERVER_CHECK_WRITE()).

The number of simultaneous sessions can be configured in the CANopen DeviceDesigner.

The USDO Server service evaluates the received data. It is checked if the objects are available in the object
dictionary and if the access attributes are valid. After that the data are copied to or read from the object
dictionary. Before and after the transmission indication functions can be called, which can modify the
response of the server.

Illustration 8: USDO Server Read

The registered event functions may be left with the parameter RET_SDO_SPLIT_INDICATION. In this case
the processing of the USDO request is stopped and the stack will not generate a response until the

CANopen/CANopen-FD Protocol Stack V3.6 page 26 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

function coUsdoServerReadIndCont() or coUsdoServerWriteIndCont() is called. This mechanism can be used
to read/write data from an external (e.g. I²C) component.

 7.5.2 USDO Client

USDO Client services must be requested (started) by the application. Reading a value from a remote device
can be started with coUsdoRead() and writing a value with coUsdoWrite(). Both functions start the USDO
transfer. Later the application is informed about the result or an error by a registered indication function.
(see coEventRegister_USDO_CLIENT_READ() and coEventRegister_USDO_CLIENT_WRITE()). For each USDO
transfer a timeout is monitored, which aborts the transfer after the timeout. The configurable timeout
value is valid for one CAN-FD frame. If the transmission consist of multiple CAN frames (segmented
transfer), the timeout restarts for each CAN frame.

Illustration 9: USDO Client Write

CANopen/CANopen-FD Protocol Stack V3.6 page 27 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.6 PDO

PDO handling is done completely automatically by the CANopen stack. All data are copied from or to the
object dictionary according to the configured PDO mapping. Inhibit time handling, timer-driven PDOs and
synchronous PDOs are handled by the CANopen Stack as well.

If a PDO with a wrong length has been received and the Emergency service is enabled, the CANopen Stack
sends an Emergency message automatically. The five application-specific bytes of the Emergency message
can be modified in advance using an indication function (see coEventRegister_EMCY(). Without a
modification by the application the Emergency message has the following content.

Byte 0..1 PDO Number

Byte 2..4 null

Synchronous PDOs are automatically handled. The receive PDOs data are copied to the objects at the
reception of the SYNC message. For transmit PDOs the data are taken from the object dictionary and sent
after the reception of a SYNC message.

The application can be informed about each received PDO by indication function. There are separate event
indication functions for synchronous and asynchronous PDOs. (see coEventRegister_PDO() and
coEventRegister_PDO_SYNC()).

 7.6.1 PDO Request

Sending a PDO is only allowed for asynchronous and synchronous-acyclic PDOs. There are two functions
available to send PDOs:

coPdoReqNr() Send PDO with defined PDO number

coPdoReqObj() Send PDO, which contains given object (index and subindex)

 7.6.2 PDO Mapping

The PDO Mapping is made by mapping tables within the CANopen stack. For static mapping the constant
tables are generated by the CANopen DeviceDesigner. For dynamic mapping the mapping tables are
generated at the initialization of the stack or at the activation of a PDO mapping (writing to sub 0).

Structure of the mapping table:

typedef struct {

void *pVar; /* pointer to variable*/

U8 len; /* number of bytes to be sent */

FLAG_T numeric; /* flag to signal numerical values(for byte swapping) */

} PDO_MAP_ENTRY_T;

CANopen/CANopen-FD Protocol Stack V3.6 page 28 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

typedef struct {

U8 mapCnt; /* number of mapped variables */

PDO_MAP_ENTRY_T mapEntry[]; /* Mapping entries */

} PDO_MAP_TABLE;

To change the PDO mapping of dynamic PDOs the following steps are required:

– disable the PDO (set NO_VALID_BIT in PDO COB-ID object)

– disable the mapping (set subindex 0 of mapping object to 0)

– modify the mapping objects

– enable the mapping (set subindex 0 to number of mapped objects)

– enable the PDO (reset NO_VALID_BIT in PDO COB-ID)

 7.6.3 PDO Event Timer

The PDO Event Timer functionality can be used for asynchronous Transmit-PDOs and for all Receive-PDOs
(not RTR). With Transmit-PDOs the PDO is sent automatically when the Event Timer has expired. With
Receive-PDOs the timer is started at each reception of the PDO. If the timer expires, before a new PDO has
been received, the application can be informed by a registered indication function. (see
coEventRegister_PDO_REC_EVENT()).

 7.6.4 PDO data update

PDOs are using data from the object dictionary to transmit them. If this data has to be updated before
transmission, an indication function can be registered (see coEventRegister_PDO_UPDATE()).

 7.6.5 RTR Handling

If the driver or hardware can not handle RTRs, bit 30 have to set at all PDO COB-Ids (0x4000 0000). With the
define CO_RTR_NOT_SUPPORTED resetting this bit is prevented.

CANopen/CANopen-FD Protocol Stack V3.6 page 29 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.6.6 PDO and SYNC

The SYNC service allows to synchronize the data transmission and the data collection in the network. After
the SYNC message has been sent all transmit PDOs are sent with the data from the object directory and all
receive PDOs are entered to the object dictionary.

The data can be updated or retrieved from the object dictionary via the registered indication functions.

Illustration 10: PDO Sync

 7.6.7 Multiplexed PDOs (MPDOs)

If the normal PDOs are not sufficient, a special kind of the PDOs the multiplexed PDOs may be used. These
MPDOs do not contain a fixed mapping, but the index and subindex information of the data are transferred
by MPDOs as well. In contrast to normal PDOs only one application object may be transferred by an MPDO.

Using the function register_MPDO() a callback function may be registered that is called when a MPDO is
received. The transmission of MPDOs is done by coMPdoReq().

Hint: MPDOs can only be sent asynchronously and need to have the transmission type 254 or 255.

CANopen/CANopen-FD Protocol Stack V3.6 page 30 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.6.7.1 MPDO Destination Address Mode (DAM)

Using the Destination Address Mode the consumer information in which object the data shall be stored are
transmitted by the producer:

 7.6.7.1.1 MPDO DAM Producer

Entries in Object Dictionary

Index Sub-index Description Value

18xxh PDO Communication Parameter

1Axxh 0 Number of mapping entries 255

1Axxh 1 Mapping entree Appl.

 7.6.7.1.2 MPDO DAM Consumer

Entries in Object Dictionary

Index Sub-Index Description Value

14xxh PDO Communication Parameter

16xxh 0 Number of Mapping Entries 255

The received data as stored in the consumer according to the transmitted index/subindex

 7.6.7.2 MPDO Source Address Mode (SAM)

Using the source address mode the producer information (source node, source index and source sub index)
are transmitted in the MPDO.

CANopen/CANopen-FD Protocol Stack V3.6 page 31 of 63

Dst.
Node

Dst.
Index

Data
Dst.
Sub

Src
Node

Src
Index

Data
Src
Sub

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.6.7.2.1 MPDO SAM Producer

The SAM Producer uses an Object Scanner List the contains all objects that may be sent by the MPDO. A
device may only contain 1 MPDO in SAM Producer Mode.

Entries in Object Dictionary

Index Sub-Index Description Values

18xxh PDO Communication Parameter

18xxh 2 Transmission Type 254/255

1Axxh 0 Number of Mapping Entries 254

1FA0h..1FCFh 0-254 Scanner !!br0ken!!

The format of the scanner list is:

MSB LSB

Bit 31..24 Bit 23..8 Bit 7..0

Block Size Index Sub Index

 7.6.7.2.2 MPDO SAM Consumer

Entries in Object Dictionary

Index Sub-index Description Value

14xxh PDO Communication Parameter

16xxh 0 Number of Mapping Entries 254

1FD0h..1FFFh 0-254 Dispatcher List

The dispatcher list is a cross reference between the producer object and the consumer object. Its format
is:

Dispatcher list:

MSB LSB

63..56 55..40 39..32 31..16 15..8 7..0

Block size Local Index Local SubIdx Prod. Index Prod SubIdx Prod Node

Using the block size multiple identical sub indices may be described by one entry.

CANopen/CANopen-FD Protocol Stack V3.6 page 32 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.7 Emergency

 7.7.1 Emergency Producer

Transmission of Emergency message can be triggered by the application or they can also be sent
automatically at certain error conditions (CAN Bus-Off, wrong PDO length, …). Automatically sent PDOs can
be modified by the application as well and its transmission can even be prohibited by the application by a
registered indication function (see coEventRegister_EMCY()).

 7.7.2 Emergency Consumer

Emergency Consumers are configured by writing the COB-IDs into the object 0x1028 in the object
dictionary. All COB-IDs in the object 01028 are received and interpreted as emergency messages. The
application is informed about the reception of each emergency message by a registered indication
function. (see coEventRegister_EMCY_CONSUMER()).

 7.8 NMT

NMT state changes are usually initiated by the NMT Master who sends the NMT commands that has to be
executed by all NMT slaves. The only exception is the transition to OPERATIONAL, which can be rejected by
the application. For this case a registered indication function is called (see coEventRegister_NMT()). With
the return value of this function the application can decide if the transition to OPERATIONAL is possible.

In certain situations the application may change the NMT state from OPERATIONAL to PRE-OPERATIONAL or
STOPPED. These situations may be error conditions like loss of heartbeat or CAN bus-OFF. The reaction on
these events are defined in the object 0x1029, which is evaluated by the CANopen stack.

 7.8.1 NMT Slave

NMT slave devices react on the NMT commands sent by the NMT master. The application can be informed
about NMT state changes by a registered indication function. (see coEventRegister_NMT()).

 7.8.2 NMT Master

The NMT master can change the NMT state of all nodes in the network by the function coNmtStateReq().
The NMT command can be sent to individual nodes or to the complete network(0). For the latter case an
additional parameter defines, if the command is also valid for the own master node.

 7.8.3 Default Error Behavior

The default error behavior (Heartbeat consumer event or CAN bus off) can be defined in the object 0x1029.
If the object does not exist, the node automatically switches into the NMT state PRE-OPERATIONAL at these
errors. If the emergency producer is activated, an emergency message is sent automatically. If an emerge
indication function is registered, the content of the 5 additional bytes of the emergency messages can be
modified. (see coEventRegister_EMCY()).

CANopen/CANopen-FD Protocol Stack V3.6 page 33 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.9 SYNC

The transmission of the SYNC message is started, if the SYNC producer bit is set in the object 0x1005 and if
the SYNC interval in object 0x1006 is greater than 0. There are 2 possible indication functions for SYNC
handling (see coEventRegister_SYNC() and coEventRegister_SYNC_FINISHED()):

Illustration 11: SYNC Handling

 7.10 Heartbeat

 7.10.1 Heartbeat Producer

If a new heartbeat producer time is set in object 0x1017, it is immediately used by the CANopen stack. At
the same time the first heartbeat message is sent if the value is unlike 0.

 7.10.2 Heartbeat Consumer

The configuration of Heartbeat consumers can be done by the function coHbConsumerSet() or by writing
to the corresponding objects 0x1016:1..n in the object dictionary.

If the function coHbConsumerSet() is used, the Heartbeat consumer is automatically configured in the
object 0x1016 if there is a free entry available. Otherwise an error is returned. Bootup messages are
received by all nodes, even if the heartbeat consumer is not configured for the remote nodes.

If a monitoring state is changed, a registered indication function (see coEventRegister_ERRCTRL()) is
called. The possible state changes are:

CO_ERRCTRL_BOOTUP Bootup message received

CO_ERRCTRL_NEW_STATE NMT State changed

CO_ERRCTRL_HB_STARTED Heartbeat started

CANopen/CANopen-FD Protocol Stack V3.6 page 34 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

CO_ERRCTRL_HB_FAILED Heartbeat lost

CO_ERRCTRL_GUARD_FAILED Guarding from master lost

CO_ERRCTRL_MGUARD_TOGGLE Toggle error of the Slave

CO_ERRCTRL_MGUARD_FAILED Guarding of the slave lost

CO_ERRCTRL_BOOTUP_FAILURE Bootup transmission error

 7.11 Life Guarding

Life Guarding is automatically activated if the values of the objects 0x100c and 0x100d are unlike 0 and the
first Guarding message from the master has been received. When the configured guarding time resp. the
life time factor has expired, the standard error behavior is executed (see chapter 7.8.3Default Error
Behavior) end a registered indication function is called (see coEventRegister_ERRCTRL()).

 7.12 Time

The time service can be used as producer or consumer. At the initialization it has to be defined if it shall be
a Time producer or consumer. To send time message the function coTimeWriteReq() can be used. Incoming
time messages are signaled by a registered indication function (see coEventRegister_TIME()).

 7.13 LED

For LED signaling according to CiA 303 two LED can be controlled by the CANopen Stack. According to the
current NMT and error state the LED can be switched on or off by a registered indication function (see
coEventRegister_LED_RED() and coEventRegister_LED_RED()).

CANopen/CANopen-FD Protocol Stack V3.6 page 35 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.14 LSS Slave

For the LSS service contains an own LSS state machine, which is not connected to the NMT state machine.

Status Definition

LSS Waiting Normal operation

LSS Configuration Configuration state, node-id and bitrate can be configured

The LSS master can switch the slave between this to states. The application can get informed in the
callback which can be registered by coEventRegister_LSS().

The LSS slave has internally 3 Node-Id values:

Persistant Node-Id Power-On Value, gets provides by the application

Pending Node-Id Temporally Node-Id

Active Node-Id Active Node-Id of the device

NMT state change and/or internal events can cause a copy procedure of the Node-Ids:

NMT Status Persistant Node-Id Pending Node-Id Active Node-Id

Reset Application

Reset Communication

LSS Set Node-Id Set new value

LSS Store Node-Id

The Active Node-Id is copy in Reset Communication from the Pending Node-Id. The switch state command
Reset Communication has to be send by the NMT-Master.

If the device starts with Persistant Node-Id = 255 and get a valid node id by „LSS Set Node Id“, an
automatic state switch to Reset Communication is triggered by the state switch LSS State Waiting.

The Persistant Node Id has to be applied as Standard Node-Id by the application. If the Persistant Node-Id
is saved in non volatile memory and changeable at run time, the application has to provide a function to
provide the Standard Node-Id. Otherwise an incorrect Node-Id gets applied in Reset Application.

LSS Master commands g get indicated by a callback, which can be registered by coEventRegister_LSS(). If
the LSS master sends a „LSS Store Command“, the new Node-Id (=> Persistant Node-Id) has to be saved in
non volatile memory, and provided by the function for the Node Id. If the Persistant Node-Id is supposed to
constant, the “LSS Store Command” has to be aborted with an error code.

 7.15 Configuration Manager

The Configuration manager module can be used in CANopen master applications only. It is used to configure
NMT slaves by using appropriated DCF files. These DCF files can be present as ASCII files or as so-called

CANopen/CANopen-FD Protocol Stack V3.6 page 36 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Concise-DCF format files.

To be transferred to the NMT slaves the DCF has to be available as Concise-DCF in NMT masters object
0x1F22. If not available as Concise-DCF the function co_cfgConvToConsive() can be used to convert ASCII
DCF files into Concise-DCF. Appropriate buffers have to be handed over in order to convert data partially.

Configuration is done for each single NMT slave by calling function co_cfgStart(). If objects 0x1F26 and
0x1F27 (expected configuration date/time)are available the function also does check the slave object
0x1020. If the object is not available or the slave configuration is not up to date, the configuration transfer
does take place. The end of the transfer is signaled to the caller by the registered indication
coEventRegister_CFG_MANAGER(). The indication will inform if the transfer was successful or not.

The configuration itself is using SDO transfer. For every to be configured node the according SDO client has
to be configured on the NMT master. For example to configure node 32 the SDO Client 32 has to be available.
Configuration of more than one NMT slave in parallel is possible.

Attention: While configuration transfer is in progress the SDO can not be used for other SDO transfers by
the application.

 7.16 Flying Master

To use the Flying Master functionality the object 0x1f80 must be present and the Flying Master bit has to
be set. At startup of the network the device starts as a slave and starts the Flying Master Negotiation
automatically. The result will be signaled by the callback function registered with coRegister_FLYMA(). If
the node runs as a slave due to its priority, the application has to configure heartbeat monitoring for the
active master. If the active master is lost, a new Flying Master Negotiation is started automatically.

CANopen/CANopen-FD Protocol Stack V3.6 page 37 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.17 Communication state

Changes in the communication state can be triggered by hardware events (Bus-Off, Error Passive, overflow,
CAN message received, transmission interrupt) or by a timer (return from bus-off). These state changes are
signaled by a registered indication function (see coEventRegister_COMM_EVENT()).

The following table describes which events cause a change of the communication state:

Event/Change of state New state Description

Bus-OFF Bus-OFF CAN controller is Bus-OFF, no communication possible

Bus-OFF Recovery Bus-OFF CAN controller tries to switch from bus-Off to active state

Return from Bus-OFF Bus-On CAN controller is ready to communicate and was able to
receive or transmit at least 1 message

Error Passive Bus-on, CAN passive CAN controller is in error passive state

Error Active Bus on CAN controller is in error active state

CAN Controller overrun - Messages are lost in the CAN controller. The event is
signaled at each loss of a message

REC-Queue full - Receive queue is full

REC-Queue overflow - Messages are lost because the receive queue is full. This
event is signaled at each loss of a message.

TR-Queue full Bus-Off/On,
Tr-Queue full

Transmit Queue is full, the current message is saved,
following message will not be saved

TR-Queue overflow Bus-Off/On,
Tr-Queue overflow

Transmit Queue is full, the message was not saved

TR-Queue empty Bus-On,
Tr-Queue ready

Transmit is ready to store messages (at least 50% free)

CANopen/CANopen-FD Protocol Stack V3.6 page 38 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.18 Sleep Mode for CiA 454 or CiA 447

Sleep Mode according to CiA-454 can be used as NMT slave or NMT master. The current Sleep mode phase
can be evaluated or set by a user function registered with coEventRegister_SLEEP().

Sleep mode is commanded by the NMT master and consists of different stages:

NMT Master function Stage/phase Slave

coSleepModeCheck() Sleep Check Check if the Sleep mode can be entered by the slave. If
not this is signaled to the NMT master

coSleepModeStart() Sleep Prepare Prepare the Sleep mode, bring down the application, but
communication is still possible, start sleep timer 1

(timer controlled) Sleep Silent Transmitting over CAN is not anymore possible, but
commands still can be received

(timer controlled) Sleep Sleep mode

After the master has initiated the “Sleep Prepare” phase the next stages are forced by a timer. All phases
are the same for the NMT master and slave. The change into the next phase is signaled by the registered
function. The application does not leave the indication function when it is in Sleep mode.
The application wakes up as soon as traffic on the CAN bus is recognized. Task of the application is it to keep
all application data in the same state as just before the Sleep state. Then it calls coSleepAwake() once
which leads to a Reset communication state on the node.
The function coSleepModeActive() can be used to check if one of the Sleep stages is active.

CANopen/CANopen-FD Protocol Stack V3.6 page 39 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 7.19 Startup Manager

To use the startup manager the following preconditions have to be met:

• Object 0x1f80 (NMT Master) must exist and it must be configured in the right way

• For each slave the properties have to be set in object 0x1f81 (Slave Assignment). The sub-index
corresponds to the node-ID of the slave

• The boot time (object 0x1f89) must be set the largest possible boot time

• A Client SDO has to be provided for each Slave

The function coManagerStart() starts the boot-up process according to CiA 302-2. All required information
are taken from the objects 0x1f80.. 0x1f89. Events like start, stop, error, or application interaction are
signaled by the indication function that can be registered using coEventRegister_MANAGER_BOOTUP(). It is
the task of the application to check and to update the slave firmware and to update the configuration.
After the application has finished its tasks it may continue the boot-up process using the following
functions:

Event Task of application Continuation with

CO_MANAGER_EVENT_UPDATE_SW Check and update of slave
Firmware

coManagerContinueSwUpdate

CO_MANAGER_EVENT_UPDATE_CONFIG Update of slave
configuration

coManagerContinueConfigUpdate

CO_MANAGER_EVENT_RDY_OPERATIONAL Start node (transition to
OPERATIONAL)

coManagerContinueOperational

CANopen/CANopen-FD Protocol Stack V3.6 page 40 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 8 Timer Handling
The Timer handling is based on a cyclic timer. Its interval can be individually defined for each application
and the use of external timer is possible as well. A timer interval is called timer-tick and the timer-tick is
the base for all timed actions in the CANopen Stack.

A new Timer is started by coTimerStart() and sorted into the linked timer list, so that all timed actions are
sorted in this list. Thus after one timer-tick only the first timer has to be checked as the following timers
cannot be expired yet.

Illustration 12: Timer Handling

The timer structure must be provided by the calling function. This means also that there is no limitation of
the number of timers.

It might happen that not all times will be a multiple of a timer tick. In this case it is possible to specify if
the timer time shall be rounded up or down. This is done when starting the timer by using the function
coTimerStart().

CANopen/CANopen-FD Protocol Stack V3.6 page 41 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 9 Driver
The driver consists of a part for the CPU and a part for the CAN controller.

CPU driver

The task of the CPU driver is to provide a constant timer tick. It can be created by a hardware interrupt or
derived from another application timer.

CAN driver

The task of the CAN driver is to handle and to configure the CAN controller, to send and to receive CAN
messages and to provide the current state of the CAN. The buffer handling is done by the CANopen Protocol
Stack.

 9.1 CAN Transmit

Messages to be transmitted are transferred by the CANopen stack into the transmit queue. Transmission
itself is then started by the function codrvCanStartTransmission(). Transmission of all messages is
interrupt driven. The function codrvCanStartTransmission() has only to issue or simulate an TX interrupt.

The TX interrupt service function has to use codrvCanTransmit() to get the next message from the queue,
program the CAN controller and transmit it. This is done until the TX queue is empty.

Illustration 13: CAN Transmit

CANopen/CANopen-FD Protocol Stack V3.6 page 42 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 9.2 CAN Receive

Reception of CAN messages is interrupt driven. The received CAN message is transferred into the RX queue
and can be later used by the CANopen stack.

CANopen/CANopen-FD Protocol Stack V3.6 page 43 of 63

Illustration 14: CAN Receive

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 10 Using operation systems
To use the CANopen stack together with a real time operational system (RTOS) there are two possibilities:

1. Use of the CANopen Stack within one task only and cyclic call of the central stack function

2. Separation into multiple tasks

This requires an inter task communication.

 10.1 Separation into multiple tasks

If the CANopen Stack is called from multiple tasks, polling of the central stack function is no longer
necessary, but it is this the central function which has to be called at the following events:

– CAN Transmission interrupt

– CAN Receive interrupt

– CAN State interrupt (if supported)

– Timer interrupt (or timer tick signal, timer task)

Illustration 15: Process Signal Handling

CANopen/CANopen-FD Protocol Stack V3.6 page 44 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

The implementation of the inter task communication and handling depends of the used operation system.

Macro Usage Meaning

CO_OS_SIGNAL_WAIT() coCommTask() Waiting for any signal

CO_OS_SIGNAL_TIMER() Timer handler Timer Tick

CO_OS_SIGNAL_CAN_STATE() CAN status
interrupt

Changed CAN Status

CO_OS_SIGNAL_CAN_RECEIVE() CAN Receive
Interrupt

New CAN message received

CO_OS_SIGNAL_CAN_TRANSMIT() CAN Transmit
Interrupt

New CAN message transmitted

 10.2 Object dictionary access

If the access to the CANopen stack is split into multiple tasks, the access to the object dictionary has to be
protected to prevent simultaneous accesses form different tasks. The following macros are available for
that:

CO_OS_LOCK_OD Lock of the object dictionary

CO_OS_UNLOCK_OD Unlock of the object dictionary

These macros have to be implemented depending on the operating system and have to be called from
application as well when a value of the object dictionary is accessed.

Within the stacks the lock resp. unlock is done immediately before and after the access to the objects.

CANopen/CANopen-FD Protocol Stack V3.6 page 45 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 10.3 Mailbox-API

The mailbox-API offers an alternative API for the functions and indications of the CANopen stack. Using this
approach the CANopen stack runs in a separate thread/task2. Any arbitrary number of application threads
can be created that can send commands to the CANopen thread via a message queue.

The CANopen thread sends a response for each command back to the application thread via a response
queue which contains the return value of the function. Additionally, indications for various events can be
received via an event queue. It is possible to configure which events are sent to each application thread.
The event handling replaces the indication functions of the normal function API.

Currently the Mailbox-API is ported to the operating systems QNX, Linux and RTX64 but any operating
system that provides queues can be supported.

2 The term thread is used for further explanations. It depends on the operating system if a thread or task is used.

CANopen/CANopen-FD Protocol Stack V3.6 page 46 of 63

Illustration 16: Mailbox-API

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 10.3.1 Creation of an application thread

Each application thread consists of an initialization and a cyclic main part. In the initialization part the
thread has to connect to the command queue of the CANopen thread and optionally thread-specific
response and event queues can be created as shown in the following example:

/* connect to command mailbox */
mqCmd = Mbx_Init_CmdMailBox(0);
if (mqCmd < 0) {

printf("error Mbx_Init_CmdMailBox() - abort\n");
return(NULL);

}

/* create response mailbox */
mqResp = Mbx_Init_ResponseMailBox(mqCmd, "/respMailbox1");
if (mqResp < 0) {

printf("error Mbx_Init_ResponseMailBox() - abort\n");
return(NULL);

}

/* create response mailbox */
mqEvent = Mbx_Init_EventMailBox(mqCmd, "/eventMailbox1");
if (mqEvent < 0) {

printf("error Mbx_Init_EventMailBox() - abort\n");
return(NULL);

}
After creating the mailboxes the event mailbox has to be configured in order to defined which events shall
be sent to the application:
 /* register for Heartbeat events like Bootup, HB started or HB lost */
 ret = Mbx_Init_CANopen_Event(mqCmd, mqEvent, MBX_CANOPEN_EVENT_HB);

if (ret != 0) { printf("error %d\n", ret); };

/* register for received PDOs */
ret = Mbx_Init_CANopen_Event(mqCmd, mqEvent, MBX_CANOPEN_EVENT_PDO);
if (ret != 0) { printf("error %d\n", ret); };

CANopen/CANopen-FD Protocol Stack V3.6 page 47 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 10.3.2 Sending commands

For all basic CANopen functions and important CANopen master functions mailbox commands are available.
To send such a command the corresponding struct have to be filled with the arguments of the
corresponding CANopen function as shown in the following example:

 /*---*
 * Send an emergency message
 * corresponds to: coEmcyWriteReq(errorCode, pAdditionalData);
 ---/
 MBX_COMMAND_T emcy;
 emcy.data.emcyReq.errCode = 0xff00;
 memcpy(&emcy.data.emcyReq.addErrCode[0], "12345", 5);
 ret = requestCommand(mqResp, MBX_CMD_EMCY_REQ, &emcy);

 /*---*
 * Send a NMT request to start all nodes including the master
 * corresponds to: coNmtStateReq(node, state, masterFlag);
 ---/
 MBX_COMMAND_T nmt;
 nmt.data.nmtReq.newState = CO_NMT_STATE_OPERATIONAL;
 nmt.data.nmtReq.node = 0;
 nmt.data.nmtReq.master = CO_TRUE;
 ret = requestCommand(mqResp, MBX_CMD_NMT_REQ, &nmt);

The return value of requestCommand() is a number which is automatically incremented. This number is also
sent back by the Response from the CANopen thread. This allows to keep track of commands and their
returns value (of the underlying CANopen functions).

CANopen/CANopen-FD Protocol Stack V3.6 page 48 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

The following CANopen functions are currently supported by the Mailbox-API:

CANopen function Command

coEmcyWriteReq() MBX_CMD_EMCY_REQ

coPdoReqNr() MBX_CMD_PDO_REQ

coNmtStateReq() MBX_CMD_NMT_REQ

coSdoRead() MBX_CMD_SDO_RD_REQ

coSdoWrite() MBX_CMD_SDO_WR_REQ

coOdSetCobId() MBX_CMD_SET_COBID

coOdGetObj_xx() MBX_CMD_GET_OBJ

coOdPutObj_xx() MBX_CMD_PUT_OBJ

7 coLss... Functions MBX_CMD_LSS_MASTER_REQ

Please refer to the reference manual for an explanations of the functions(commands) and the return
values(responses).

 10.3.3 Reception of events

If events are registered by an application thread the can be received using Mbx_WaitForEventMbx(). All
events correspond to the indication functions of the function API and the members of the event structure
correspond to the arguments of the indication functions.

 /* wait for new events for 0ms*/
 if (Mbx_WaitForEventMbx(mqEvent, &event, 0) > 0) {
 printf("event %d received\n", event.type);

 /* message depends on event type */
 switch (event.type) {
 /* Heartbeat Event like Bootup, heartbeat started or Heartbeat lost */
 case MBX_CANOPEN_EVENT_HB:
 printf("HB Event %d node %d nmtState: %d\n",
 response->event.hb.state,
 response->event.hb.nodeId,
 response->event.hb.nmtState);
 break;

 /* PDO reception */
 case MBX_CANOPEN_EVENT_PDO:
 printf("PDO %d received\n", response->event.pdo.pdoNr);
 break;

 /* see example for more events */
 default:
 break;

}
 }

CANopen/CANopen-FD Protocol Stack V3.6 page 49 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 11 Multi-Line Handling
The usage of the Multi-Line stack is the same as with the single-line version. All described can be used with
multiple CAN lines. All data of all lines are handled separately so that all lines can be run independent of
each other. The object dictionary for multi-line applications is created in a single project of the CANopen
DeviceDesigner but each line is handled in a separate way.

Each API functions has an additional argument in the beginning which indicates the like as an UNSIGNED8
value starting at 0. The applies for all stack functions and all indication functions.

Examples for multi-line applications can be found in example_ml/xxx.

 12 Multi-Level Networking – Gateway Functionality
The object 0x1F2C is required to use the gateway functionality. This object defines routes that specific
which network can be reach at which CAN interface.

 12.1 SDO Networking

Illustration 17: Multi-Level Networking

The SDO client initiates a connection to the gateway. This initiation message contains the target network
ID and the target node-ID.

All following SDO requests to the gateway are now forwarded to the target node. The gateway receives the
SDO request as an SDO server and uses an SDO client connection in the remote network to reach the other
node.

The CANopen stack needs to know which SDO client it shall use. It can specified for each connection. The
application programmer may register an indication function by register_GW_CLIENT() and in callback
function the application may specify an SDO client. If no function is registered always SDO client 1 is used. If
SDO client 1 busy, no connection may be established. The COB-IDs for the SDO client are configured
automatically but not reset at the end of a transfer.

CANopen/CANopen-FD Protocol Stack V3.6 page 50 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 12.2 EMCY Networking

Object 0x1f2f is required to support Emergency routing. It contains a bit-coded information about the
networks the EMCY message shall be forwarded to. The sub indices correlate to the Emergency Consumer
list (object 0x1028) and are evaluated in parallel.

 12.3 PDO Forwarding

PDO Forwarding is handled automatically for all objects in the rage 0xB000 to 0xBFFF, which are mapped
into a Transmit or receive PDO. In the CANopen DeviceDesigner you have to these objects only in one line,
and declare them as “shared in all lines”. In general one Receive PDO can only mapped to exactly one
Transmit PDO, because the forwarding list is deposited with the Receive PDO.

For static PDOs this list can not be modified at run-time, even if the mapping of the Transmit PDO has being
changed. The update of the forwarding takes place after every modification of the PDO mapping

CANopen/CANopen-FD Protocol Stack V3.6 page 51 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 13 Example implementation
The CANopen stack comes with multiple example for a fast implementation of a CANopen device.

The necessary steps depend on the development environment, but the steps in general are identical. It is
shown using the example slave1. It can be copied or used directly.

1. go to folder example_sl/slave1

2. configuration of CANopen services and object dictionary

- start CANopen DeviceDesigner

- File->OpenProject – open project file slave1.cddp

- Tab General Settings - define number of send and receive buffers and the number of used
indication functions

- Tab Object Dictionary – optionally add objects and services

- Tab Device Description – add entries for the EDS files

- File->Generate Files – generate object dictionary and configuration files (.c/.h)

- File->Save Project – save project

3. Add CANopen source files to project (in IDE) or makefile

- Files in colib_sl/src (CANopen Stack)

- Files in colib_sl/inc (CANopen Stack public Header)

- Files in example_sl/slave1 (example application)

- Files in codrv_sl/<drivername> (driver)

4. Set include paths

- example_sl/slave1

- colib_sl/inc

- codrv_sl/<drivername>

5. build (compile and link) the project

Now a ready-to-run CANopen project is available, that can be modified according to the requirements of
the application.

For own implementations, please ensure, that you include gen_define.h always before co_canopen.h in your
own sources.

CANopen/CANopen-FD Protocol Stack V3.6 page 52 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Files in example project slave1

gen_define.h generated file by CANopen DeviceDesigner, contains configuration for CANopen stack

gen_objdict.c generated files by CANopen DeviceDesigner, contains object dictionary and
initialization functions.

main.c Main part of the program

Makefile Makefile

slave1.cddp Project file for CANopen DeviceDesigner

slave1.eds EDS File, generated by CANopen DeviceDesigner

 14 C#-Wrapper
For Windows, as for Mono under Linux, there is a C#-Wrapper available. The CANopen C stack is available
thru a dynamic linked library (DLL). The C# sharp wrapper uses this DLL to access the provided CANopen
functions.

All C#Wrapper methods are static and implemented in one class. The class methods use the same names as
the ANSI-C functions.

Examples:

CANopen.coEventRegister_NMT()==coEventRegister_NMT()
CANopen.coEmcyWriteReq()== coEmcyWriteReq()
CANopen.coCommTask()== coCommTask()
…

All return values and parameters are equivalent to the C version, so the user manual and the reference
manual of C implementation can be used.

CANopen/CANopen-FD Protocol Stack V3.6 page 53 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15 Step by Step Guide – using CANopen Services

 15.1 SDO server usage

Configuration using the CANopen DeviceDesigner

• For each SDO server create an SDO object in the range of 0x1200 to 0x127F
(hint: No need to set COB-IDs, this is done by the application program)

• If SDO Block transfer should be used, set parameters:

• block size to be used

• usage of CRC yes/no

Configuration of the application:

• register functions for read, write or test using coEventRegister_SDO_SERVER_READ() /
coEventRegister_SDO_SERVER_WRITE() / coEventRegister_SDO_SERVER_CHECK_WRITE())

• COB-Id for SDO number one is set automatically according to the CANopen node-Id

• set COB-Id for all other server SDOs or alternatively wait until they are configured at run time by
the NMT master

Usage in the application:

• Asynchronous via the registered indication function. The return value of the indication function
affects the responses of the SDO transfer.

 15.2 SDO client usage

Configuration using the CANopen DeviceDesigner

• For each SDO client create an SDO object in the range of 0x1280 to 0x12FF
(hint: no need to set COB-IDs, this has to be done by the application program)

• If SDO block transfer should be used, set parameters:

• block size to be used for the transfer

• number of bytes when block transfer should be used. If smaller normal segmented is used

• usage of CRC yes/no

Configuration of the application:

• Register indication functions for the result of a read or write request
(coEventRegister_SDO_CLIENT_READ() / coEventRegister_SDO_CLIENT_WRITE())

• set COB-Ids for all client SDOs or set these just before the request is used

CANopen/CANopen-FD Protocol Stack V3.6 page 54 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Usage in the application:

• set COB-Ids appropriate for the server to be requested

• start the request using coSdoRead(), coSdoWrite(), coSdoDomainWrite()

• get the result via the registered indication function

• usage of domain transfers (coSdoDomainWrite()) can add an additional indication function, it is
called after defined number of messages was transmitted, e.g. to reload the domain buffer

 15.3 USDO Server Utilization

Setup in the CANopen DeviceDesigner:
– define the number of indication functions

Setup in the application:
– Setup indication functions for read/write/write-test (coEventRegister_USDO_SERVER_READ() /

coEventRegister_USDO_SERVER_WRITE() / coEventRegister_USDO_SERVER_CHECK_WRITE())

Usage in the application:
– takes place asynchronous at USDO reception

the return value has effect on the USDO Transfer Response

 15.4 USDO Client Utilization

Setup in the CANopen DeviceDesigner:
– define the number of the indication functions

Setup in the application:
– Setup indication functions for the result of read/write (coEventRegister_USDO_CLIENT_READ() /

coEventRegister_USDO_CLIENT_WRITE())

Usage in the application:
– Start transfer (coUsdoRead(), coUsdoWrite(), coUsdoDomanWrite())

– The result will be delivered by the setup indication function

– When using the domain transfer (coUsdoDomanWrite()) an additionally indication can be defined,
which will be called after a defined number of Can telegrams for example to update the transmit
buffer.

CANopen/CANopen-FD Protocol Stack V3.6 page 55 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15.5 Heartbeat Consumer

Configuration using the CANopen DeviceDesigner:

• for each heartbeat consumer create a sub-index entry in object 0x1016 using the CANopen
DeviceDesigner

• Node number and consumer time can be configured directly in this sub-index entry

Configuration of the application:

• Register the indication function for heartbeat events

• eventually set consumer time and node-Id again

Usage in the application:

• Consumer time monitoring starts when the first heartbeat of the supervised node arrives

• Each heartbeat event, started, offbeat, changed node state, is signaled via the registered
indication function

 15.6 Emergency Producer

 15.6.1 CANopen classic

Configuration using the CANopen DeviceDesigner:

• Create the Emergency Producer object 0x1014 using the CANopen DeviceDesigner

• Create the Error History object 0x1003 with n sub-indices according the application requirements
using the CANopen DeviceDesigner

Configuration of the application:

• Register the indication function using coEventRegister_EMCY() which is used to get the
manufacturer specific data

Usage in the application:

• Sending the EMCY by calling coEmcyWriteReq()

• The registered indication function is called at PDO errors (to much, to less data), CAN or heartbeat
errors

CANopen/CANopen-FD Protocol Stack V3.6 page 56 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15.6.2 CANopen FD

Setup in the CANopen DeviceDesigner:
– Setup emergency producer object (0x1014)

– Setup error history objects

Setup in the application:
– Setup indication function for set manufacturer specific data (coEventRegister_EMCY())

Usage in the application:
– Call via coEmcyWriteReq()

– registered indication will be called when PDO errors (to much/less data) or CAN/Heartbeat errors
occur

–

 15.7 Emergency Consumer

Configuration using the CANopen DeviceDesigner:

• Create the Emergency Consumer object 0x1028 using the CANopen DeviceDesigner

• Fill in the Emergency Consumer COB-IDs. Sub-index corresponds to the external node-Id

Configuration of the application:

• Register the indication function using coEventRegister_EMCY_CONSUMER() which is called when an
EMCY arrives

Usage in the application:

• Registered indication function is called if a configured EMCY consumer entry matches a received
EMCY

CANopen/CANopen-FD Protocol Stack V3.6 page 57 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15.8 SYNC Producer/Consumer

Configuration using the CANopen DeviceDesigner:

• Create the SYNC object 0x1005 using the CANopen DeviceDesigner

• define if it is used as Consumer or Producer (defined by bit 30)

• For SYNC Producer configure producer time at object 0x1006 in µseconds

Configuration of the application:

• Register the indication function using coEventRegister_SYNC() for received SYNC messages

• Register the indication function using coEventRegister_SYNC_FINISHED() for actions to be done
after the SYNC handling the stack has already done

Usage in the application:

• Registered functions are called after a SYNC message was received

 15.9 PDOs

 15.9.1 Receive PDOs

Configuration using the CANopen DeviceDesigner:

• Create objects which should be received by PDO within the manufacturer (0x2000 to 0x5FFF) or
profile (0x6000) area

• Set the PDO mapping flag of these objects to allowed, RPDO or TPDO

• Create PDO communication parameters for each PDO (objects 0x1400 to 0x15FF):

• Set transmission type – for synchronous PDOs the SYNC object must be created as well (see
15.8)

• Set event timer value in milliseconds

• Configure the PDO mapping for this PDO (objects 0x1600 to 0x17FF)

• Select mapping type static or dynamic using the tab “Mask”

Configuration of the application:

• Configure or modify used COB-Id. RPDO1 to RPDO4 are configured according the “predefined
connection set” if not changed

• Register indication function for received asynchronous PDOs using coEventRegister_PDO()

• If required register indication function for the event timer used for monitoring the reception of
the RPDO using coEventRegister_PDO_REC_EVENT()

• If required register the EMCY in case wrongly configured PDOs should be reported by sending the
appropriate EMCY code

• If required register the SYNC receive indication using coEventRegister_PDO_SYNC()

CANopen/CANopen-FD Protocol Stack V3.6 page 58 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Usage in the application:

• Registered indication functions are automatically called if a configured RPDO is received. Object
dictionary entries are already updated

 15.9.2 Transmit PDOs

Configuration using the CANopen DeviceDesigner:

• Create objects which should be transmitted by PDO within the manufacturer (0x2000 to 0x5FFF) or
profile (0x6000) area

• Set the PDO mapping flag of these objects to allowed, RPDO or TPDO

• Create PDO communication parameters for each PDO (objects 0x1800 to 0x19FF):

• Set transmission type – for synchronous PDOs the SYNC object must be created as well (see
15.8)

• Set event timer value in milliseconds

• Set Inhibit Time in 100µseconds

• Set SYNC Start value if used

• Configure the PDO mapping for this PDO (objects 0x1a00 to 0x1bFF)

• Select mapping type static or dynamic using the tab “Mask”

Configuration of the application:

• Configure or modify used COB-Id. TPDO1 to TPDO4 are configured according the “predefined
connection set” if not changed

Usage in the application:

• Transmit a PDO

• update the object dictionary data (which are mapped into a TPDO)

• PDOs with transmission type 0 – acyclic, 254 and 255 – asynchronous are sent by calling
coPdoWriteNr() or coPdoWriteIndex()

• Synchronous PDOs with transmission type 1 to 240 are sent automatically when SYNC arrives

CANopen/CANopen-FD Protocol Stack V3.6 page 59 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15.10 Dynamic objects

Activation in CANopen DeviceDesigner:

• Optional Services → Use Dynamic Objects

Configuration of the application:
• Initialization of dynamic object dictionary coDynOdInit()
• Add an object to object dictionary coDynOdAddIndex()
• Add a sub object to object dictionary coDynOdAddSubIndex()

Usage in the application:
• dynamic objects can be accessed in the application in the same way as static created objects by the

CANopen DeviceDesigner

 15.11 Object Indication

Configuration using the CANopen DeviceDesigner:

• Configure the maximum number of objects used this way
example: #define CO_EVENT_OBJECT_CHANGED 5

Configuration of the application:

• Register an indication function using coEventRegister_OBJECT_CHANGED()

Usage in the application:

• The registered function is called if the object was changed by SDO write access or by a received PDO

CANopen/CANopen-FD Protocol Stack V3.6 page 60 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 15.12 Configuration Manager

Configuration using the :
– Create objects 0x1F22 and 0x1F23 (Conceive DCF) with corresponding sub indices

– Create objects 0x1F26 and 0x1F27 (configuration date/time) optionally

– Create all required SDO Client(s) 0x1280..0x12ff

Configuration of the application:
– register an indication function using registerEvent_CFG_MANAGER()

– Put Concise DCF files into the object 0x1F22

– or read DCF file and convert them do concise DCF using co_cfgConvToConsive()

– and put concise data to 0x1F22

Usage in the application:
– Start the configuration for each node by co_cfgStart().

– A completion is signaled by the registered indication function.

CANopen/CANopen-FD Protocol Stack V3.6 page 61 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

 16 Directory structure

codrv_sl/xxx Hardware specific CANopen Single-line driver

codrv_sl/common Common CANopen Single-line driver files

colib_sl/inc CANopen Single-line protocol Stack Header

colib_sl/src CANopen Single-line protocol Stack sources and internal headers

colib_sl/profile CANopen Single-line Profile

colib_sl/csharp_wrapper CANopen Single-line C# Wrapper

example_sl CANopen Single-line examples

codrv_ml/xxx Hardware specific CANopen Multi-line driver

codrv_ml/common Common CANopen Multi-line driver files

colib_ml/inc CANopen Multi-line protocol Stack Header

colib_ml/src CANopen Multi-line protocol Stack sources and internal headers

colib_ml/profile CANopen Multi-line Profile

example_ml CANopen Multi-line examples

cofddrv_sl/xxx Hardware specific CANopenFD Single-line driver

cofddrv_sl/common Common CANopenFD Single-line driver files

cofdlib_sl/inc CANopenFD Single-line Single-line protocol Stack Header

cofdlib_sl/src CANopenFD Single-line protocol Stack sources and internal headers

examplefd_sl CANopenFD Single-line examples

cofddrv_ml/xxx Hardware specific CANopenFD Multi-line driver

cofddrv_ml/common Common CANopenFD Multi-line driver files

cofdlib_ml/inc CANopenFD Multi-line protocol Stack Header

cofdlib_ml/src CANopenFD Multi-line protocol Stack sources and internal headers

examplefd_ml CANopenFD Multi-line examples

ref_man Reference Manual

user_man User Manual

CANopen/CANopen-FD Protocol Stack V3.6 page 62 of 63

emotas embedded communication GmbH, Fritz-Haber-Straße 9, D-06217 Merseburg, Germany

Appendix
SDO Abort codes

RET_TOGGLE_MISMATCH 0x05030000

RET_SDO_UNKNOWN_CCS 0x05040001

RET_SERVICE_BUSY 0x05040001

RET_OUT_OF_MEMORY 0x05040005

RET_SDO_TRANSFER_NOT_SUPPORTED 0x06010000

RET_NO_READ_PERM 0x06010001

RET_NO_WRITE_PERM 0x06010002

RET_IDX_NOT_FOUND 0x06020000

RET_OD_ACCESS_ERROR 0x06040047

RET_SDO_DATA_TYPE_NOT_MATCH 0x06070010

RET_SUBIDX_NOT_FOUND 0x06090011

RET_SDO_INVALID_VALUE 0x06090030

RET_MAP_ERROR 0x06040042

RET_PARAMETER_INCOMPATIBLE 0x06040043

RET_ERROR_PRESENT_DEVICE_STATE 0x08000022

RET_VALUE_NOT_AVAILABLE 0x08000024

CANopen/CANopen-FD Protocol Stack V3.6 page 63 of 63

	1 Overview
	2 Properties
	3 CANopen Protocol Stack concept
	4 CANopen classic and CANopen FD
	5 Indication Functions
	6 The object dictionary
	6.1 Object dictionary variables
	6.2 Object description
	6.3 Object dictionary assignment
	6.4 Strings and Domains
	6.4.1 Domain Indication

	6.5 Dynamic Object Dictionary
	6.5.1 Managed by Stack functions
	6.5.2 Managed by the application

	7 CANopen Protocol Stack Services
	7.1 Initialization functions
	7.1.1 Reset Communication
	7.1.2 Reset Application
	7.1.3 Set node id

	7.2 Store/Restore
	7.2.1 Load Parameter
	7.2.2 Save Parameter
	7.2.3 Clear Parameter

	7.3 SDO
	7.3.1 SDO Server
	7.3.2 SDO Client
	7.3.3 SDO Block transfer

	7.4 SDO Client Network Requests
	7.5 USDO
	7.5.1 USDO Server
	7.5.2 USDO Client

	7.6 PDO
	7.6.1 PDO Request
	7.6.2 PDO Mapping
	7.6.3 PDO Event Timer
	7.6.4 PDO data update
	7.6.5 RTR Handling
	7.6.6 PDO and SYNC
	7.6.7 Multiplexed PDOs (MPDOs)
	7.6.7.1 MPDO Destination Address Mode (DAM)
	7.6.7.1.1 MPDO DAM Producer
	7.6.7.1.2 MPDO DAM Consumer

	7.6.7.2 MPDO Source Address Mode (SAM)
	7.6.7.2.1 MPDO SAM Producer
	7.6.7.2.2 MPDO SAM Consumer

	7.7 Emergency
	7.7.1 Emergency Producer
	7.7.2 Emergency Consumer

	7.8 NMT
	7.8.1 NMT Slave
	7.8.2 NMT Master
	7.8.3 Default Error Behavior

	7.9 SYNC
	7.10 Heartbeat
	7.10.1 Heartbeat Producer
	7.10.2 Heartbeat Consumer

	7.11 Life Guarding
	7.12 Time
	7.13 LED
	7.14 LSS Slave
	7.15 Configuration Manager
	7.16 Flying Master
	7.17 Communication state
	7.18 Sleep Mode for CiA 454 or CiA 447
	7.19 Startup Manager

	8 Timer Handling
	9 Driver
	9.1 CAN Transmit
	9.2 CAN Receive

	10 Using operation systems
	10.1 Separation into multiple tasks
	10.2 Object dictionary access
	10.3 Mailbox-API
	10.3.1 Creation of an application thread
	10.3.2 Sending commands
	10.3.3 Reception of events

	11 Multi-Line Handling
	12 Multi-Level Networking – Gateway Functionality
	12.1 SDO Networking
	12.2 EMCY Networking
	12.3 PDO Forwarding

	13 Example implementation
	14 C#-Wrapper
	15 Step by Step Guide – using CANopen Services
	15.1 SDO server usage
	15.2 SDO client usage
	15.3 USDO Server Utilization
	15.4 USDO Client Utilization
	15.5 Heartbeat Consumer
	15.6 Emergency Producer
	15.6.1 CANopen classic
	15.6.2 CANopen FD

	15.7 Emergency Consumer
	15.8 SYNC Producer/Consumer
	15.9 PDOs
	15.9.1 Receive PDOs
	15.9.2 Transmit PDOs

	15.10 Dynamic objects
	15.11 Object Indication
	15.12 Configuration Manager

	16 Directory structure

